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ABsTRACT: This note discusses estimation and testing for the presence of common cycles in cointe-
grated vector autoregressions. A simple two-stage estimator is considered where the cointegration
vectors are estimated in the first stage and the remaining parameters, subject to common cycles,
in the second stage. The latter stage is equivalent to using reduced rank regression in a stationary
framework. Simple procedures for iterating on these two stages are discussed with emphasis on
estimating the cointegration space conditional on the common cycles restriction. It is shown that
the two-stage estimator of the parameters describing the dynamics is asymptotically Gaussian and
efficient. Furthermore, an estimator of the co-feature matrix is examined and its asymptotic prop-
erties are derived. Finally, two asymptotically equivalent methods for computing the likelihood
ratio test for the null of s versus s + g common cycles are presented along with the limiting be-
havior of the tests.
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1. SETUP

The model we shall consider is a standard cointegrated VAR model written on error correction

form as:
k-1

Axe= D Tibxei+afxe1+e, t=1,...,T, (1)
i=1
where x; is p dimensional, the parameters a and f are p X r with full column rank r €
{0,1,...,p — 1}, xo,...,x1-k are fixed, while & is i.i.d. Gaussian with zero mean and posi-
tive definite covariance matrix Q. For simplicity, but without loss of generality, I have excluded
all deterministic variables from the model since the common cycles hypothesis does not impose
any restrictions on the parameters of such variables.
Following Vahid and Engle (1993) we say that x; has s common cycles if (and only if)

o=, ... iy af =tM, )

where ¢ is a full rank px s matrix and n is a full rank p(k—1) +r X s matrix for s € {r,...,p—1}.
Given that x; has s common cycles it follows that there exists a p X (p — s) matrix £, such that
¢ Ax; is serially uncorrelated (since &' ¢ = 0 by construction). The matrix ¢, is called the

co-feature matrix.

In the event that k = 1, s is always equal to r, the cointegration rank, and {;, = «. This
means that if we wish to test for the presence of s common cycles under k = 1 it is equivalent
to testing for the rank of the p X p matrix IT = «ff’. Once we have established a proper rank
for this matrix, there is no need to pursue any further estimation or testing regarding common
cycles. When the lag order is greater than 1, however, then s can be any integer between r and
p—1. It is clear that s cannot be smaller than r since that would violate the rank assumption for
a. Furthermore, the case s = p is uninteresting since this implies that © is a full rank matrix,
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! Hecq, Palm and Urbain (2000) suggest two forms of reduced rank for ©. The strong form is equivalent to equation
(2) being satisfied, while their weak form only requires that the I'; matrices can be written as functions of ¢, i.e.,
that ¢ (Ax; — aff'x.—1) = & &. The weak form is not discussed in this note since, e.g., it is not invariant to the
specification of the error correction form, i.e., if x appears in levels on the right hand side of (1) for t —1 or for t — k.



i.e., common cycles would not impose any restrictions on ® and the co-feature matrix would be
empty. Rather, the case s = p may be used as one alternative hypothesis when we are interested
in testing the null hypothesis that © has reduced rank s < p.

Assuming that x; is subject to s common cycles, it follows that © has less than p(p(k —1) +71)
unique parameters. Since {n’ = EMM ™'’ = &*n*' for any full rank s X s matrix M we know
that, e.g., only the space spanned by the columns of n can identified. To uniquely determine n
(and ¢) let us therefore select a basis for the space spanned by its columns, expressed as:

n=h+hyy, 3

where h is a known p(k — 1) + r X s matrix such that, for simplicity, h’'h = I, h, is p(k —
1) +r x p(k = 1) +r — s of full rank such that h’ h = 0 and k', hy = Ip-1)+r—s, While y is
p(k — 1) + r — s X s contains the free parameters of 1.

From this discussion it directly follows that if x; has s common cycles, this imposes exactly
q = (p—s)(p(k—1)+r—s) restrictions on the I'; and a parameters of the cointegrated VAR model
relative to the case when © has full rank p. Generally, suppose we wish to test the hypothesis
that © has rank s versus the alternative that it has rank s + g, the number of restrictions on I}
and a is g = g(pk +r —2s — g). Against all g € {1,...p — s}, the number of restrictions is
positive when k > 2. Again, for k = 1 we cannot impose any additional restrictions on «a based
on the common cycles hypothesis since s = r by assumption.

2. EsTIMATION: A TwWO-STAGE ALGORITHM

As discussed above, the assumption of s common cycles imposes a second reduced rank condi-
tion on the cointegrated VAR model whenever the lag order of the VAR, k, is greater than or
equal to 2. Since k = 1 is trivial, we shall assume that k > 2.

First of all, suppose that s = r. In this case the two reduced rank conditions can be merged
into one reduced rank condition since { = aM for some full rank r X r matrix M. This means
that

Axt—q

Axt:a[fl/z ﬁ/] Ax.kl "
t—k+

Xt—1

O(ﬁ*’Zikt + &,

where [Ty --- Tx—1] = aif,. This means that ® = a[f, I;] so that h = [0 I,]’. Hence, { = «
and y = fjo, while the co-feature matrix £, spans the space spanned by |, as in the case when
k = 1. The parameters a and * can be estimated by maximum likelihood through reduced
rank regression. In case f should satisfy some restrictions, e.g., exact identification, procedures
analysed by Johansen (1996) can be used directly.

Second, suppose s > r so that the two reduced rank conditions cannot necessarily be merged
as above. One approach to estimation of the cointegrated VAR with s common cycles, is to
use a procedure similar to the one considered for the I(2) model by Johansen (1995a); see
also Paruolo (2000).? The first stage is to determine the cointegration rank, r, and obtain an
estimate of f using, e.g., reduced rank regression, as in Johansen (1996). This stage may also
involve estimation of 8 subject to linear restrictions.

2 Maximum likelihood estimation may be considered using an algorithm similar to the one studied by Johansen
(1997) when s > r. Alternatively, one may consider the iterative Gaussian reduced rank estimator suggested by
Ahn (1997), where (B,¢,v) (and Q) are computed through an approximate Newton-Raphson algorithm; see also
Ahn and Reinsel (1988). Furthermore, if § is known then the estimator of (£, y, Q) discussed in this section is the
maximum likelihood estimator.



In stage two, we condition on the estimated f from stage one and estimate ¢ and n using
reduced rank regression; see Hecq, Palm and Urbain (2001) for an alternative two-stage ap-
proach. That is, let z; = [Ax]_; --- Ax], ; (f'x;-1)']’ so that

AXt = §r[’zt + &. (4)
From the reduced rank regression procedure discussed in, e.g., Johansen (1996, Chap. 6) we
obtain estimates of ¢* and 1* such that (1/T) >.{_; n*'zzin* = I, while £*n* = ¢n/. Since
h'h = I it follows that the estimate of n, which satisfies (3), can also be computed from
n =n*(h'n*)~! while y = h’Ln.?’ Accordingly, the estimate of £ must satisfy { = ¢*n*’h. Given
6= fﬁ’ we compute Q=Q1/T) ZiT=1 €], where & = Ax; — Oz,

Since the estimated © is asymptotically independent of the estimated 8, and the latter con-
verges weakly at a faster rate than the former, we may stop here. In practise, however, it may
be advantagenous to consider iteration over the two stages, but where the first stage is slighly
modified. In case f is generically identified in the sense of Johansen (1995b) we can write it as
a function of its unique parameters. Let f§; be the i:th column of  with

Bi=mi+ M, 1€{1,...,r}, (5)

where m; and M; are known and ¢; contains the free parameters for f;. Letting vec be the
column stacking operator, we can express the identified 8 as

mi M1 0 te 0 1
mso 0 M2 0 ()
vec(f) = +
m-| [0 0 - M| |or]
=m+ Mo.
The gradient vector for the log-likelihood function in the direction of ¢ can be expressed as:
olnL
()—:;’ = T(VCC(C())/[L«®\Q,_1(M01 —aﬁ’Mll —FM21)]M, (7

where ® is the Kronecker product, I' = [Ty --- Tx-1], M;; = (1/T) Zthl Zitzg.t, Zot = AXxy,
Z1¢ = X¢—1, and Zgp = [Axé_1 Axé_k .1]’. Plugging the estimated parameters and product
moment matrices into (7) we first check if the gradient is sufficiently close to zero. If it is, we
are done. If not, we can solve for ¢ conditional on © and Q by setting the gradient vector to

zero. This provides us with
-1
o= M (0 a@Mu)M| M|vec((Mio -~ M0 ) = [l @ Mu]m|.  (8)

Conditional on the new 8 we can then re-estimate £, 7, and Q as in stage two. Given the
outcome of this stage, we can compute the gradient vector in (7) and check if it is sufficiently
close to zero. If it is the iterations are finished, if not we re-estimate 8 using (8), and so on until
we have convergence.”

3 To show this, notice that for n = n* (h'n*)~! the following p(k — 1) + r equations hold:

K I
n= .
hj_ hln*(hlﬂ*)_l

Since the inverse of the matrix which is multiplies by n is given by [h h, ], premultiplication of both sides by this
inverse gives us 7 = h + hy k' n*(W'n*)™! = h + hyy. If h were such that h'h # I, the above relations would have to
be changed to account for this.

4 The vector 2, is actually an estimate of the unknown vector 2, whenever an estimate of § is used.

5 It may be noted that the estimator of f§ could also be based on, e.g., cross-equation restrictions; see, e.g., Pesaran
and Shin (2002). What is important here is that f is identified and that vec(f) = m + Me.
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Suppose instead that  has not been generically identified as in (6) but has been obtained
through reduced rank regression as in Johansen (1996, Chap. 6). Let us decompose 1 such that
I' = ¢n, and a = ¢n). This means that (1) can be expressed as:

Zot = &Ny Zot + ENy ' Z1e + &t C))
To determine if re-estimation of f is useful in the first place we can use the following expres-
sion (which we may think of as a “gradient matrix”), with f§ evaluated at its previous value:

o' Q7 (Mo1 —TMa1 — aff/M11) = m&' Q™ (Mor — &nyMoar — &nyf/ M1z ). (10)

If this matrix is sufficiently close to zero we do not need to re-estimate f. If it is not close to

zero, we may proceed by setting (10) to zero and solve for  conditional on ¢, n, and Q. This
gives us:

_ _ _ -1

p =My (Mo — Miznzg' )Q 7 en) (mg'Q 7" eny) (11)

This represents the modified stage one for the iterations when f is not generically identified. As

above, we can re-estimate ¢, 7, and Q as in stage two, but conditional on the new f. Given the

outcome of this stage we can compute the right hand side of (10) and check if it is sufficiently
close to zero. If it is, we are done, if not we continue until the algorithm has converged.

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

Suppose first that § is known. This means that the estimator of (£,1, Q) is the maximum
likelihood estimator and is equivalent to reduced rank regression using, e.g., the algorithm
presented by Johansen (1996, Chap. 6); see, also, Anderson (1951). Accordingly, the estimated
parameters solve the first order conditions for the log-likelihood function.

Let 8 = vec(®) and y = [vec(§)’ vec(y)']’. This means that the partial derivatives of 6 with
respect to the free parameters y is:

00
G(Y) = O_Y, = [ [Tl 02y Ip] [hJ_ 02y §] Kp(k—1)+r—s,s], (12)

where Ky, , is the mn X mn commutation matrix; see Magnus and Neudecker (1988). That
is, vec(y') = Kp-1)+r-s,svec(y). If there are exactly s common cycles, then G(y) has full
column rank. The first order condition for y is equal to the partial derivatives of the log-
likelihood function with respect to 0 times the matrix G(y). Let M,, = (1/T) Zthl z¢2; while
My, = (1/T) Zthl Ax;z).° We then have that the gradient vector is given by
olnL
oy’

Furthermore, since our estimator of y is a maximum likelihood estimator, z; is stationary, and
the log-likelihood function satisfies standard regularity conditions (being the Gaussian log-
likelihood), we know that ¥ is a consistent estimator of y and, furthermore, that vT(§ — )
converges in distribution to a Gaussian with zero mean and asymptotic covariance matrix given
by the inverse of the information matrix for y. Furthermore, Q) is a consistent estimator of , it
is asymptotically independent of y (which is the reason why the asymptotic covariance matrix
for ¥ is given by the inverse of the information matrix for y), and converges in distribution at
the rate +/T to a Gaussian.

Specifically, by a Taylor expansion of the gradient in (13) and some standard rearrangement
we have that:

= T(vee(Myz — OMz2)) [Ipge-n+r ® Q71 G(y). (13)

VT —y) = [G(Y)’ (M. ® Q7Y G(Y)] G [1® Q] vec( \/LT Z stzi) +0,(1), (14

t=1

6 Notive that M, = [Moy Mg f], while

M,, = [ M» M2 f ] .
My fMup
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where
0%InL

oyoy’
Since M,, LN 1, a positive definite matrix, we find from, e.g., Liitkepohl (1991, Chap. 3) that

1 < ,) d
— NO,u® Q ),
Vec(ﬁ;qzt = N(0,u )

= -TG(y) [M.; ® Q7' G(y), (15)

where - denotes convergence in probability and — convergence in distribution. It then follows
that

N d

VT(§-7) = N(,Z,), (16)

where o

3y = [G(Y)’ (1® Q‘l]G(Y)] ,
is the inverse of the information matrix. Hence, the estimator of y is asymptotically efficient
since its asymptotic covariance matrix is equal to the Cramér-Rao lower bound. Furthermore,
the asymptotic covariance matrix is equal to the one presented in Ahn (1997, Theorem 1) for
the approximate Newton-Raphson algorithm for estimating all parameters jointly; see, also,

Section 4.

Now, as noted above, 6 is a nonlinear and continuously differentiable function of y.” Based

on well known results for such functions (see, e.g., Serfling, 1980, Chap. 3) we therefore have
that

VT(6-0) = GVT(§—y) + 0p(1)
< N(0,GNE,GHY).

The asymptotic covariance matrix for 6 therefore has reduced rank, and its rank is equal to the
rank of %, i.e., s(pk +r —s).

Furthermore, and following the results in, e.g., Magnus and Neudecker (1988), the as-
ymptotic behavior of the maximum likelihood estimator of Q can directly be derived. Let
w = vech(Q), where vech is the column stacking operator which takes only the values on
and below the diagonal. It can easily be shown (see, e.g., Magnus and Neudecker, 1988, or
Liitkepohl, 1991) that @ and ¥ are asymptotically independent by checking the matrix with sec-
ond order cross partials. Furthermore, let D,, be the p? X (p + 1)p/2 duplication matrix which
equates vec(Q) = Dpw, while D} = (D%Dp)‘lDi, is its Moore-Penrose inverse. We then find
that

17)

VT(&—w) S N(0,2D} [Q ® Q1D}). (18)
Aagain, the asymptotic covariance matrix for @ is equal to the inverse of the information matrix
for w and the estimator is therefore asymptotically efficient.

It may also be of interest to estimate the co-feature matrix £, and determine its asymptotic
properties. Given a value of ¢ we know the space spanned by the columns of £, . However, we
need to select a basis for this space to uniquely determine the elements of £, and to derive its
asymptotic behavior.

To this end, let

-1
¢L=H-Hy({H) ¢H, (19)
where H is a known p X (p — s) matrix with full rank, and H, is p X s such that ¢’H, has rank

sand H'H, = 0. It is easily seen that {’¢, = 0 for this choice of basis for £,. We then find that
the partial derivatives of the elements of £, with respect to the elements of £ is a p(p — s) X ps

7 The relationship between these parameters can actually be written as:

1 1
0= |: |:h + Ehj_w ® Ip:| |:§hJ_ ® §:| Kp(k71)+rfs,s:| Y= QG(Y)Y,

where Q is a diagonal matrix with some elements equal to 1 and others equal to 1/2.
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matrix given by

ovec(§) _ [, , )
W B [gi ® H.({'Hy) :|Kp,s, (20)

since H' — H'¢(H' §) 'H' = ¢/ Since ¢, does not depend on y it follows that:

_ ovec(fy)  [ovec(Zy)
FOO=—5,—= [avec(g)' O}'

Let the estimator of the co-feature matrix ¢, be denoted as ¢, and suppose that its obtained by
inserting the estimator of ¢ into equation (19). We then find that

ﬁ(@l —-¢) = F(Y)ﬁ(? -Y)+ 0p(1)
% N(0, FOOZ,F(Y)).

Since F(y) has rank (p — s)s it follows that the asymptotic covariance matrix for the estimator
of the unique elements of ¢, has full rank (where the latter can be represented by the s X (p—s)
matrix H' £,). Moreover, since y is asymptotically efficient £, is efficient in this sense as well.

The above results are derived for the assumption that 8 is known. However, all results also
hold when f is estimated and the estimator satisfies

A p
VT ( B - [3) - 0.

Since, e.g., the Gaussian maximum likelihood estimator of B satisfies this super-consistency

requirement, the above asymptotic results are valid for the two-stage approach to estimating a

cointegrated VAR with common cycles restrictions. To see this, notice first that the 2, regressors,
based on the estimated f, is related to the z; regressors, using the true value of f, through

(21)

(22)

Axt_]_ 0
ﬁt = =2z +
AXt—k+1 0
| Bxer | | (B— B x|

It then follows that M., based on 2; converges in probability to u, just like M., based on
knowing B. Furthermore, and importantly for convergence in distribution, let & = Ax; — ©2;.
Then,

1l ., 1<
7 Zl: &8l = 7 le eczy + op(1). (23)
t= t=

Hence, the limiting behavior of (1/+/T) Zthl &2, is equivalent to the limiting behavior of
(1/T) Zthl &t2;. At the same time, using an estimator of § instead of a known matrix intro-
duces a bias, which although asymptotically negligable, may still be relevant in small samples.

4. ESTIMATION: A ONE-STAGE ALGORITHM

Ahn (1997) has suggested that we can estimate ¢ and y simultaneously through an iterative ap-
proximate Newton-Raphson algorithm. Hence, the algorithm is based on f being (generically)
identified.® Let ¢ = [¢/ y']’, the Ahn estimator is obtained from iteration on the following

8 The algorithm in Ahn (1997) is actually based on = [I. B]’, where fy is an (p — r) X r matrix with the free
parameters of the exactly identified f.



system:

(]IS(H_D _ (]g(i) _ { |:(32 lnL]_lélnL}
060 | 06 [ 40

-1
_ 30, [ M [Q la®Mn]M MK, [d'Q 1 ® My,] G(Y)] y ,
G [Q'a®@ Mu]KprM  G(Y) [My: ® Q71 G(y) (24)

}¢:q§(i)

where M, = (1/T) Zthl 2¢Zy, = [Mi2 M1upl’ and My, = M,;. The iterations have con-
verged when the gradient vector is sufficiently close to zero and as starting values we may,
e.g., choose the estimate of ¢ for unrestricted ©, and the estimator of y from the two-stage
algorithm which is conditioned on the this initial estimate of ¢. Asymptotically, the two-stage
and the approximate Newton-Raphson estimators of ¢ and y are equivalent. Furthermore, the
two-stage estimator of ¢ and the maximum likelihood estimator of ¢ for unrestricted © are also
asymptotically equivalent. Hence, the limiting behavior of all these estimators of ¢ does not de-
pend on the reduced rank structure of ©. Ahn (1997) notes, however, that for finite samples the
efficiency in the sense of smaller mean squared error can be gained by exploring the structure
among the parameters on stationary processes.

M'[I ® (M1o — M11fa’ — M12I") Q71 ] vec(a)
G(Y), [Ip(k—1)+r ® Q_l] VeC(sz - ®Mzz)

X

5. TESTING

A natural approach to testing for s common cycles versus the alternative of s + g (where g €
{1,... p—s}) within the current framework is to use a likelihood ratio test. Estimation under the
null can be achieved as discussed above, while estimation under the alternative is as discussed
above for all g < p — s and using the unrestricted estimate of © when g = p — s.

Let Q ; be the estimator of Q subject to s; common cycles, with s; = s under the null and
sj = s + g under the alternative. Asymptotically, it does not matter whether the two-stage or
the one-stage algorithm has been used here. The likelihood ratio statistic can be written as:

det(Q;) )
det(Qsvg) /-

Given the asymptotic normal behavior of 6 under the null hypothesis, the fact that all the
common cycles restrictions are expressed as restrictions on parameters on stationary processes
only, i.e., the restrictions do not depend on f§ (see, e.g., Sims, Stock and Watson, 1990), and
the fact that the estimator of  converges to its true value in probability at the rate /T (i.e.,
it is super-consistent), it follows that LR is asymptotically x> with ¢ = g(pk +r — 25 — g)
degrees of freedom. In the event that g = p — s, the number of degrees of freedom g =
(p—3s)(plk —1) +r —3s).

An asymptotically equivalent form of the likelihood ratio test may also be derived. The es-
timator of n*, i.e., the estimator obtained from the reduced rank regression before employing
the normalization in (3), is obtained (just like in Johansen, 1996) by solving the eigenvalue
problem

LR = Tln( (25)

det(AM,; — MM I My, ) =0,

for eigenvalues 1 > )11 > e > )ALp > )ALPH = ... = ip(k_1)+r = 0 and eigenvectors vV =
v .- Vp(k_1)+r], normalized such that V'M,,V = I. Here,A My = a/m Zthl AxeAx] =
Moo, while M, = M'... The estimator of n* is given by i* = [V} --- V] under the null, and by
A=V - \75+g] under the alternative. Since the maximized likelihood function is given by

5j

Lax " (s9) = det(Mye) [T (1 = ),
i=1
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for any choice of s; € {r,...,p}, the likelihood ratio test of s common cycles versus s + g
common cycles can then be formulated as:
S+g
LRy = -T > In(1-%;). (26)
i=s+1
The two test statistics in (25) and (26) are numerically equivalent if (and only if) the estimator
of f is not updated under the two-stage approach. In that case, Q; and Qs+g in (25) are
computed using the same f matrix. The statistic in (26) always uses the same f matrix under
the null and the alternative hypotheses.
The test statistic in (26) is similar to the statistic proposed by Vahid and Engle (1993) when
g = p — s. In fact, the only difference is that (26) uses the number of observations, while the
statistic in Vahid and Engle employs the number of observations corrected for the number of
lags.
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