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Section A: Bayesian VAR Models with Homoskedastic Innovations

The General Normal-Inverted Wishart BVAR Model

Let yt be an n-dimensional vector of observable variables such that its VAR representation is given

by

yt = Φ0 +

p∑
j=1

Φjyt−j + εt, t = 1, . . . , T, (A.1)

where εt ∼ Nn(0,Ω) and Φj are n × n matrices for j ≥ 1 and an n × 1 vector if j = 0. Let Xt =

[1 y′
t · · · y′

t−p+1]
′ be an (np+1)-dimensional vector, while the n×(np+1) matrix Φ = [Φ0 Φ1 · · · Φp]

such that the VAR can be expressed as:

yt = ΦXt−1 + εt. (A.2)

Stacking the VAR system as y = [y1 · · · yT ], X = [X0 · · · XT−1] and ε = [ε1 · · · εT ], we can express

this as

y = ΦX + ε, (A.3)

with log-likelihood

log p
(
y
∣∣X0; Φ,Ω

)
= −nT

2
log(2π) − T

2
log
∣∣Ω∣∣− 1

2
tr
[
Ω−1εε′

]
, (A.4)

where, for convenience, we use the same notation for the random variables as their realizations.

The normal-inverted Wishart prior for (Φ,Ω) is given by

vec
(
Φ
)∣∣Ω, α ∼ Nn(np+1)

(
vec
(
μΦ
)
,
[
ΩΦ ⊗ Ω

])
, (A.5)

Ω
∣∣α ∼ IWn

(
A, v

)
, (A.6)
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where the prior parameters (μΦ,ΩΦ, A, v) are determined through a vector of hyperparameters,

denoted by α.

The conjugate normal-inverted Wishart prior gives us a normal posterior for Φ|Ω, α and an in-

verted Wishart posterior for Ω|α. Specifically,

vec
(
Φ
)∣∣Ω, y,X0, α ∼ Nn(np+1)

(
vec
(
Φ̄
)
,
[
(XX ′ +Ω−1

Φ )−1 ⊗ Ω
])
, (A.7)

Ω
∣∣y,X0, α ∼ IWn

(
S, T + v

)
. (A.8)

Furthermore, it follows that the log marginal likelihood conditional on α is given by

log p
(
y
∣∣X0, α

)
= −nT

2
log(π) + log Γn(T + v) − log Γn(v) − n

2
log
∣∣ΩΦ

∣∣
+
v

2
log
∣∣A∣∣− n

2
log
∣∣XX ′ +Ω−1

Φ

∣∣− T + v

2
log
∣∣S∣∣, (A.9)

where Γb(a) =
∏b

i=1 Γ([a− i+1]/2) for positive integers a and b with a ≥ b, while Γ(·) is the gamma

function.

Prior A: Minnesota with Sum-Of-Coefficients and Dummy-Initial-Observation

In this paper we consider two ways of parameterizing the prior parameters (μΦ,ΩΦ, A, v). The first

approach, called Prior A, is based on Giannone et al. (2015) with a Minnesota prior combined with

the standard sum-of-coefficients prior by Doan et al. (1984), and the dummy-initial-observation prior

by Sims (1993). As pointed out by Sims and Zha (1998), the latter part of the prior was designed

to neutralize the bias against cointegration due to the sum-of-coefficients prior, while still treating

the issue of overfitting of the deterministic component; see also Sims (2000).

Specifically, Prior A can be implemented through Td = n(p + 2) + 1 dummy observations by

prepending the y (n× T ) and X (np+ 1 × T ) matrices with the following:

y(d) =

[
λ−1
o diag

(
ψ � ω

)
0n×n(p−1) diag(ω) δ−1ȳ0 μ−1diag

(
ψ � ȳ0

)] ,

X(d) =

⎡
⎢⎣ 01×np 01×n δ−1 01×n

λ−1
o

(
jp ⊗ diag(ω)

)
0np×n δ−1

(
ıp ⊗ ȳ0

)
μ−1

(
ıp ⊗ diag(ȳ0)

)
⎤
⎥⎦ ,

(A.10)

where � is the Hadamard product, i.e., element-by-element multiplication. The vector ıp is a p-

dimensional unit vector, while the p × p matrix jp = diag[1 · · · p]. Notice that the first n(p + 1)

columns of the matrices in (A.10) cover the Minnesota prior, the following column is the dummy-

initial-observation prior, while the remaining n columns determine the sum-of-coefficients prior.

The hyperparameter λo > 0 gives the overall tightness in the Minnesota prior, the cross-equation

tightness is set to unity, while the harmonic lag decay hyperparameter is equal to 2. The hyper-

parameter δ captures shrinkage for the dummy-initial-observation prior, where δ → ∞ gives the

standard diffuse prior for Φ0. The hyperparameter μ similarly determines shrinkage for the sum-of-

coefficients prior, while the vector ω handles scaling issues. In this paper we focus on forecasting and

let each element of ω be given by the estimated innovation standard deviation from AR processes

of order p for the corresponding observed variable. The vector ψ is the prior mean of the diagonal
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of Φ1, and ȳ0 is given by the pre-sample mean of yt, i.e., ȳ0 = (1/p)
∑p

j=1 yj−p. This is consistent

with the treatment in Bańbura et al. (2010) and Giannone et al. (2019).1

The vector ψ is given by ın under the orthodox Minnesota prior (random walk prior mean), but

can also be given by, for instance, a 0-1 vector as in Bańbura et al. (2010), where ψi is set to unity

if yit is a levels variable and to zero if it is a first differenced variable. For the SoC prior, we let

ψi = 1 for all variables that appear in first differences in the measurement equations of the DSGE

models and as levels variables in the VAR models, while the remaining elements have ψi = 0.9.

It now follows that the three-dimensional vector of hyperparameters to be estimated is given by

α = [λo δ μ]
′ under the SoC prior.

From, e.g., Bańbura et al. (2010) we find that the relationship between the dummy observations

and the prior parameters (μΦ,ΩΦ, A, v) are:

μΦ = y(d)X
′
(d)

(
X(d)X

′
(d)

)−1
, ΩΦ =

(
X(d)X

′
(d)

)−1
,

A =
(
y(d) − μΦX(d)

) (
y(d) − μΦX(d)

)′
, v = Td − (np+ 1).

If we make use of the expression for the number of degrees of freedom above, it follows that v = 2n

and the prior mean of Ω exists as v > n+1 when n ≥ 2. However, the number of degrees of freedom

can instead be selected as desired rather than taken literally from the dimensions of the dummy

observation matrices. For example, the choice v = n+ 2 is sufficient to ensure that the expectation

of Ω|α under the prior density exists and this is the choice we make in this paper for the SoC prior

as well as for the prior for the long run discussed below.

Given the dummy observations in equation (A.10), simple analytical expressions for the prior

location matrices μΦ and A can be shown to be

μΦ =
[(
(ın − ψ) � ȳ0

)
diag

(
ψ
)
0n×n(p−1)

]
,

A = diag
(
ω
)2
.

Furthermore, since ΩΦ only depends on the parameters affecting X(d), the prior covariance matrix

of Φ does not depend on the vector ψ.

Letting y� = [y(d) y] and X� = [X(d) X], it can be verified that the posterior parameters can be

conveniently expressed as

Φ̄ = y�X
′
�

(
X�X

′
�

)−1
,

XX ′ +Ω−1
Φ = X�X

′
�,

S =
(
y� − Φ̄X�

)(
y� − Φ̄X�

)′
.

Prior B: Minnesota with a Prior for the Long Run

The second parameterization of the normal-inverted Wishart prior is based on the prior for the long

run (PLR) suggested by Giannone et al. (2019). The PLR provides an alternative to the SoC prior

for formulating the disbelief in an excessive explanatory power of the deterministic component of

1 An alternative approach is considered by, e.g., Giannone et al. (2015) who treat ω as a hyperparameter to be
estimated.
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the model; see Sims (2000). Specifically, the PLR focuses on long-run relations, stationary as well

as non-stationary, where economic theory can play an important role for eliciting the priors. The

PLR does not impose the long-run relations but instead allows for shrinkage of the VAR parameters

towards them.

Let B be an n× n nonsingular matrix with two blocks of rows

B =

⎡
⎢⎣β′

⊥

β′

⎤
⎥⎦ , (A.11)

where β are r ≤ n potential cointegration relations (Johansen, 1996) and β⊥ reflects coefficients on

the n − r possible stochastic trends, with β′β⊥ = 0 whenever 1 ≤ r ≤ n − 1. For the PLR with a

diffuse prior for the constant term (Φ0) we replace the last n+1 columns of y(d) and X(d) in equation

(A.10) such that

y(d) =

[
λ−1
o diag(ψ � ω) 0n×n(p−1) diag(ω) 0n×1 B−1diag(ψ �Bȳ0 	 φ)

]
,

X(d) =

⎡
⎢⎣ 01×np 01×n γ−1 01×n

λ−1
o

(
jp ⊗ diag(ω)

)
0np×n 0np×1

(
ıp ⊗B−1diag(Bȳ0 	 φ)

)
⎤
⎥⎦ ,

(A.12)

where element-by-element division is denoted by 	. The hyperparameter γ reflects overall tightness

of Φ0 such that a diffuse and improper prior is obtained when γ−1 is (arbitrarily close to) zero.

The hyperparameter φ is an n × 1 vector which captures shrinkage of the prior on the possibly

non-stationary and stationary linear combinations of y in the rows of B. Since the PLR addresses

the issue of the overfitting of the deterministic component, while also allowing for cointegration

relations, there is no strong a priori reason for also including the dummy-initial-observation prior

in this setup, other than it being an elegant approach for including a proper prior for the constant

term of the VAR model.

Note that the original PLR is based on ψ = ın, but we have introduced it here as a convenient way

of allowing for non-unit means of the diagonal elements of Φ1 also for this prior. As a consequence, it

complements the treatment of possible cointegration relations, where the prior mean may otherwise

imply a unit root. For instance, if a possible cointegration relation is a single variable, then having

the corresponding ψ element set to some value less than one in absolute terms ensures that the prior

mean of the VAR parameters is consistent with this variable being stationary. In this paper, we let

ψi = 0.8 for such variables under the PLR; see also the specification of β below.

The vector of unknown hyperparameters is given by α = [λo φ
′]′, with n+ 1 elements, while the

matrix B is suggested by economic theory, such as from the three DSGE models considered in this

paper. As pointed out by Giannone et al. (2019), the PLR simplifies to the sum-of-coefficients prior

when B = In and φi = μ for i = 1, . . . , n; see the last n rows of y(d) and X(d) in (A.10) and (A.12).

With the nine variables of yt being ordered as real GDP, real private consumption, real total

investment, GDP deflator inflation, total employment, real wages, the nominal short-term interest

rate, the spread between the total lending rate and the policy rate, and unemployment, the DSGE
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models may be used directly to suggest the following non-stationary long-run relations:

β′
⊥ =

⎡
⎢⎣1 1 1 0 0 1 0 0 0

1 1 1 0 1 0 0 0 0

⎤
⎥⎦ .

This means that the two potential stochastic trends are given by a technology trend shared by

GDP, consumption, investment and wages, and a labor supply (population) trend shared by GDP,

consumption, investment and employment. The possibly stationary long-run relations are similarly

given by

β′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0

−1 0 0 0 1 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

These seven linear combinations yield (the log of) the consumption-output ratio, the investment-

output ratio, the labor share, inflation, the short-term nominal interest rate, the spread, and unem-

ployment.2

It should be noted that having an improper prior on Φ0 through γ−1 = 0 means that X(d)X
′
(d) is

singular and this should be taken into account when computing, e.g., the log marginal likelihood in

(A.9). To deal with this, let

X =

⎡
⎢⎣ı′T
Y

⎤
⎥⎦ , X(d) =

⎡
⎢⎣c(d)
Y(d)

⎤
⎥⎦ , Γ =

[
Φ1 · · · Φp

]
, ΩΦ =

⎡
⎢⎣ γ2 01×np

0np×1 ΩΓ

⎤
⎥⎦ ,

where ıT is a T×1 unit vector, and where c(d) is the first row of X(d) which is zero except for position

n(p+ 1) + 1 being equal to γ−1. The prior for the VAR parameters is now expressed as

vec
(
Γ
)∣∣Ω ∼ Nn2p

(
vec
(
μΓ
)
,
[
ΩΓ ⊗ Ω

])
, (A.13)

while p(Φ0) ∝ 1 and the prior of Ω is given by (A.6). Let Z = y − ΓY , Φ̄0 = T−1ZıT , and let

D = IT − T−1ıT ı
′
T ,

2 A possible contender to this setup is to follow Giannone et al. (2019) and instead consider also a third possible
stochastic trend, given by a vector with unit coefficients on inflation and the short-term nominal interest rate and
zeros elsewhere, i.e., a nominal stochastic trend. This means that the two vectors in β′ above that pick these two
variables (rows four and five) should be replaced with one vector taken as row five minus row four, providing a possibly
stationary real interest rate.

– 5 –



a T × T symmetric and idempotent matrix. Furthermore, with D being symmetric and idempotent

we may define Z̃ = ZD, such that ỹ = yD, Ỹ = Y D and ZDZ ′ = Z̃Z̃ ′, while

Γ̄ =
(
ỹỸ ′ + μΓΩ

−1
Γ

)(
Ỹ Ỹ ′ +Ω−1

Γ

)−1

S = ỹỹ′ +A+ μΓΩ
−1
Γ μ′

Γ − Γ̄
(
Ỹ Ỹ ′ +Ω−1

Γ

)
Γ̄′.

It can be shown that the normal-inverted Wishart posterior for the VAR parameters is given by

Φ0

∣∣Γ,Ω, y,X0, α ∼ Nn

(
Φ̄0, T

−1Ω
)
, (A.14)

vec
(
Γ
)∣∣Ω, y,X0, α ∼ Nn2p

(
vec
(
Γ̄
)
,
[
(Ỹ Ỹ ′ +Ω−1

Γ )−1 ⊗ Ω
])

(A.15)

Ω
∣∣y,X0, α ∼ IWn

(
S, T + v − 1

)
. (A.16)

Hence, the improper prior on Φ0 results in a loss of degrees of freedom for the posterior of Ω.3

Furthermore, the log marginal likelihood is

log p
(
y
∣∣X0, α

)
= −n(T − 1)

2
log(π) + log Γn(T + v − 1) − log Γn(v) − n

2
log
∣∣ΩΓ

∣∣
+
v

2
log
∣∣A∣∣− n

2
log(T ) − n

2
log
∣∣Ỹ Ỹ ′ +Ω−1

Γ

∣∣− T + v − 1

2
log
∣∣S∣∣, (A.17)

where the term log(T ) stems from T = ı′T ıT and is obtained when integrating out Φ0 from the joint

posterior. The relationship between the dummy observations and the prior parameters is

μΓ = y(d)Y
′
(d)

(
Y(d)Y

′
(d)

)−1
, ΩΓ =

(
Y(d)Y

′
(d)

)−1
,

A =
(
y(d) − μΓY(d)

) (
y(d) − μΓY(d)

)′
, v = Td − (np+ 1).

Letting ỹ� = [y(d) ỹ] and Ỹ� = [Y(d) Ỹ ], it follows that the posterior parameters

Γ̄ = ỹ�Ỹ
′
�

(
Ỹ�Ỹ

′
�

)−1
,

Ỹ Ỹ ′ +Ω−1
Γ = Ỹ�Ỹ

′
� ,

S =
(
ỹ� − Γ̄Ỹ�

)(
ỹ� − Γ̄Ỹ�

)′
.

In the event that the improper prior on Φ0 is replaced with a proper prior through the dummy-

initial-observation prior, then the unknown 2(n + 1) × 1 vector of hyperparameters is given by

α = [λo δ ω
′ φ′]′. For this case, X(d)X

′
(d) is non-singular and we may use the same equations as in

the case of Prior A when determining the marginal likelihood and the posterior distributions of the

VAR parameters.

Hyperpriors and Posterior Inference

The use of hyperpriors is by no means new and has recently been employed in the BVAR models

studied in the papers by Giannone et al. (2015, 2019) and Bańbura et al. (2015). Following Giannone

et al. (2015), as hyperpriors for λo, δ and μ we use a Gamma distribution with mode 0.2, 1 and 1

3 This loss of one degree of freedom is due to (y(d), X(d)) having one observation less as γ → 0, i.e., as the prior on
Φ0 becomes improper.
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(also as in Sims and Zha, 1998) and standard deviations 0.4, 1 and 1, respectively.4 Furthermore,

following Giannone et al. (2019), the hyperprior for each element of φ is Gamma with mode and

standard deviation equal to 1.

By combining the marginal likelihood in (A.9) with the SoC prior for the hyperparameters, or

the expression in (A.17) for the marginal likelihood with the PLR for the hyperparameters, the

hyperparameters in the vector α can be estimated from the corresponding log posterior kernel. A

numerical optimizer, such as csminwel by Chris Sims, may now be used to compute the posterior

mode of α as well as a suitable covariance matrix, such as the inverse Hessian at the mode. To

obtain posterior draws of α one may, for instance, apply the standard random-walk Metropolis

algorithm using the mode estimates, a normal proposal density and a suitable scaling parameter

for the covariance matrix such that the acceptance rate lies within a suitable interval. Once these

draws are available, posterior draws of Φ and Ω may be obtained from their posterior distributions

conditional on α.

Dealing with the Ragged Edge

To formally deal with the ragged edge property of real-time data vintages, the methodology discussed

above is not feasible and needs to be replaced with a computationally heavier approach. Specifically,

the expression of the likelihood function5 is no longer valid as it assumes that all variables have

observations for the full sample. The likelihood function can instead be computed recursively with a

Kalman filter that supports missing observations; see, e.g., Durbin and Koopman (2012, Chap. 4.10).

This is technically uncomplicated, but the need to take missing data into account in a stepwise

manner when computing the likelihood function means that an analytical expression for the marginal

likelihood conditional on α is not available. The joint prior density of the parameters (Φ,Ω, α) can,

of course, be computed and the product between it and the likelihood function yields the usual

posterior kernel. Numerical optimization of all the parameters can now be applied to this kernel,

yielding the posterior mode estimate of all parameters. Posterior sampling of the parameters can

be conducted using, e.g., Markov Chain Monte Carlo (MCMC) or Sequential Monte Carlo (SMC)

methods.

While this procedure is formally valid, the dimension of the parameter space is typically large,

making posterior mode estimation and posterior sampling cumbersome and time consuming. More-

over, this is expected to be numerically very challenging since restrictions on Ω (positive definite)

and α (positive) must hold. Since the real-time data vintages used by, for instance, our study

4 Recall that the gamma distribution has the following density

pG(z|a, b) = 1

Γ(a)ba
za−1 exp

(−z

b

)
,

with shape parameter a > 0 and scale parameter b > 0. The mean is here ab while the variance is ab2. The
mode is unique when a > 1 and is then given by b(a − 1). With mode denoted by μ̃ and standard deviation by
σ, it holds that b = (

√
μ̃+ 4σ2 − μ̃)/2, while a = (σ/b)2. For the case with σ = 1 and μ̃ = 1, it follows that

b = (
√
5 − 1)/2 ≈ 0.6180, a = 1/b2 ≈ 2.6180, and the mean is close to 1.6180. The other case with σ = 0.4 and

μ̃ = 0.2 means that b = (
√
17 − 1)/10 ≈ 0.3123 and a = (2/5b)2 ≈ 1.6404, such that the mean is approximately equal

to 0.5123.
5 See, e.g., equation (A.4).

– 7 –



only have missing data for the last two time periods, one option is to discard these periods when

estimating the parameters. Doing so would allow for the approach advocated by Giannone et al.

(2015, 2019), which reduces the posterior mode estimation and MCMC or SMC posterior sampling

dimension problems from having n2p+n+dim(α) parameters to simply having dim(α) parameters,

while the VAR parameters can be obtained from direct sampling once the α parameters have been

computed. The trade-off between using a formally valid approach with a high computational burden

and a procedure based on the disposal of some information during the estimation stage for lower

computational costs is expected to favor the latter case when n and p are large enough compared

with the number of data points being disposed of. For the current study with n = 9 and p = 4,

this amounts to having 333 fewer parameters in the latter case. From McAdam and Warne (2019,

Table 4) the number of available observations on the different variables for the last time period

is less than or equal to 2 of 9, while the corresponding number for the second last time period is

7 of 9; see also Warne (2022a, Table B.2) for an updated Table which includes also the vintages

2015Q1–2019Q4. Hence, the number of data points being discarded is at most 9. It should be kept

in mind, however, that the discarded data may be highly important when forecasting and may also

influence the parameter estimates, especially when the discarded data is sufficiently different from

the utilized data. The direct effect is avoided by including all the available vintage data during the

forecast stage, while the indirect effect through the parameter estimates is the cost of discarding

data during the estimation stage.

Once posterior draws of the VAR parameters are available, the predictive likelihood can be esti-

mated using the approach advocated by Warne et al. (2017) and McAdam and Warne (2019), where

the last two time periods of each data vintage are now included in the information set. In this paper

we do not evaluate the costs of using the two approaches with respect to computational time and

difference between the predictive likelihood estimates. To save valuable computational time, we opt

for the second approach and to further save time, we do not use posterior draws of the hyperparam-

eters when sampling the VAR parameters from their posteriors, but fix them at the posterior mode

estimates for each data vintage.

Additional Results on the Estimation of the BVAR Models

The recursive posterior mode estimates of the α hyperparameters are depicted in Figure I.2 for the

BVAR with the SoC prior (top) and the PLR (bottom). The former model has three hyperparameters

and from the plots we find that the estimates of the overall Minnesota tightness hyperparameter,

λo, vary between roughly 0.2 and 0.3 with an average of 0.26. The shrinkage hyperparameter for

the dummy-initial-observation part of the prior, δ, typically takes values between 1.5 and 2.0 (the

mean is 1.61) with most of the values below 1.5 up to 2005, and values above thereafter. The μ

hyperparameter related to the sum-of-coefficients part is estimated at about 2.30 on average.

Turning next to the hyperparameters of the PLR case, we find that the recursive estimates of the

λo parameter are similar to those for the SoC prior with a mean of 0.27. Concerning the shrinkage

hyperparameters on the long-run relations in the B matrix, we find that the φ1, φ2 and φ4 are
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all very close to unity. Recall that these parameters reflect shrinkage for the two possibly non-

stationary relations reflecting a technology and a labor trend, as well as the potentially stationary

investment-output ratio. The high stability of the posterior mode estimates around the prior mode

for these hyperparameters reflects a lack of information from the (marginal) likelihood about these

parameters.6 Concerning the hyperparameter for the consumption-output ratio, φ3, the recursive

estimates are upward sloping until 2014 with an average value of 0.89. Next, for the labor-share

hyperparameter, φ5, the estimates are below unity with an average of 0.60, suggesting more shrinkage

than at the prior mode, with a fairly large drop in 2003 from 0.9 to around 0.4 and a jump up to

roughly 0.7 in 2010.

The last four hyperparameters concern shrinkage for specific variables: inflation, the short-term

nominal interest rate, the spread and the unemployment rate, respectively. The average posterior

mode estimate of φ6 is 0.08, with a mild upward trend for the recursive estimates until 2014. The

remaining three hyperparameters all have larger average values of 2.40, 0.87 and 5.00, respectively.

Overall, there is some variation for these hyperparameters and in the cases of φ7, for the short-term

nominal interest rate, an upward trending path consistent with less shrinkage over the sample. For

the shrinkage hyperparameter related to the spread, φ8, there are instead two jumps in the path

around 2003 and 2005, respectively, until a new plateau of approximately 0.9 is reached.

6 Specifically, if one plots the log marginal likelihood function for this BVAR model, fixing all hyperparameters at
their posterior mode values except one (for anyone of the vintages) and making use of a suitable grid around the
mode value for, say, φ1 gives a very flat profile, while the corresponding log posterior kernel has the same shape as
the underlying gamma prior.
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Section B: Real-Time Backcasts, Nowcasts and Forecasts from VAR Models

This Appendix first describes how the VAR model in equation (A.1) can be applied to backcast,

nowcast and forecast when we have real-time data. To be specific, we shall assume that data on

some variables are missing in periods T − 1 and T , corresponding to the situation for the RTD of

the euro area. The second part is concerned with the estimation of the marginal likelihood of the

VAR model when taking the ragged edge of the real-time data into account.

In addition to being interested in the yt variables, we are also interested in forecasting the first

differences of some of these variables. To this end, let S be an n × s matrix with full column rank

s ≤ n which selects unique elements of yt such that

zt = S′(yt − yt−1

)
.

In other words, zt is an s-dimensional vector whose elements are first differences of some of the

elements in yt. This means that

zt = Φ∗
0 +

p∑
j=1

Φ∗
jyt−j + S′εt,

where

Φ∗
j =

⎧⎪⎪⎨
⎪⎪⎩
S′(Φ1 − In

)
, if j = 1,

S′Φj , otherwise.

In order to derive a state-space system for the VAR model, including the first difference variables

zt, we stack these equations as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zt

1

yt

yt−1

...

yt−p+2

yt−p+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Φ∗
0 Φ∗

1 Φ∗
2 · · · Φ∗

p−2 Φ∗
p−1 Φ∗

p

0 1 0 0 · · · 0 0 0

0 Φ0 Φ1 Φ2 · · · Φp−2 Φp−1 Φp

0 0 In 0 · · · 0 0 0

...
...

. . .
...

...

0 0 0 0 In 0 0

0 0 0 0 · · · 0 In 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zt−1

1

yt−1

yt−2

...

yt−p+1

yt−p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S′εt

0

εt

0

...

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This gives us the state equation of the system. More compactly, we express it as

ξt = Fξt−1 + Cεt. (B.1)

The measurement equation of the system is now given by

yt = H ′ξt, t = 1, . . . , T − 2. (B.2)

where

H ′ =
[
0n×(s+1) In 0n×n(p−1)

]
.
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For t = T−1, T , when some of the variables in yt are unobserved, we introduce the matrices St, where

ỹt = S′
tyt includes all the observed values of yt and none (NaN) of the unobserved. Accordingly, we

have that for H̃t = HSt the measurement equations are given by

ỹt = H̃ ′
tξt, t = T − 1, T. (B.3)

We are now equipped with the state-space system and can proceed to setup a suitable Kalman filter,

updater and smoother; see, e.g., Durbin and Koopman (2012) for details.

To this end, note that for t = 1, . . . , T − 2 the vector ξt is observed and determined as

ξt = KXt,

where

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 S′ −S′ 0

1 0 0 0

0 In 0 0

0 0 In 0

0 0 0 In(p−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

is an (np + s + 1) × (np + 1) matrix. Notice that the case p = 1 is treated as p = 2 with Φ2 = 0.

Letting ξt|t−1 denote the standard Kalman filter projection of ξt based on the data up to period t−1

and taking the parameters as fixed, it follows that

ξt|t−1 = Fξt−1, t = 1, . . . , T − 2.

Similarly, let Pt|t−1 denote the covariance matrix of ξt|t−1 with the consequence that

Pt|t−1 = CΩC ′, t = 1, . . . , T − 2.

Furthermore, it holds that ξt|t = ξt and Pt|t = 0 for the same time periods. It can also be seen that

the covariance matrix of yt given the data up to period t− 1 is given by

Σy,t|t−1 = H ′CΩC ′H = Ω, t = 1, . . . , T − 2.

Unless one is interested in computing the likelihood function, there is no need to run this Kalman

filter recursively. Rather, the above filter equations are merely used as input for the interesting

time periods t = T − 1, T, T + 1, . . . , T + h, where we shall perform backcasting, nowcasting and

forecasting taking the ragged edge into account.
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For t = T − 1, T , it no longer holds that all elements of yt are observed. As mentioned above, the

observations are instead given by ỹt. For t = T − 1, the filtering equations are:

ξT−1|T−2 = FξT−2|T−2 = FξT−2, (B.4)

PT−1|T−2 = CΩC ′, (B.5)

ỹT−1|T−2 = H̃ ′
T−1ξT−1|T−2, (B.6)

Σỹ,T−1|T−2 = H̃ ′
T−1PT−1|T−2H̃T−1 = S′

T−1ΩST−1, (B.7)

where Σỹ,t|t−1 denotes the one-step-ahead forecast error covariance matrix of ỹt. Concerning the

update equations, these are given by

ξT−1|T−1 = ξT−1|T−2 + PT−1|T−2H̃T−1Σ
−1
ỹ,T−1|T−2

(
ỹT−1 − ỹT−1|T−2

)
, (B.8)

PT−1|T−1 = PT−1|T−2 − PT−1|T−2H̃T−1Σ
−1
ỹ,T−1|T−2H̃

′
T−1PT−1|T−2. (B.9)

Notice that PT−1|T−1 is not a zero matrix and that its rank is expected to be n− rank(ST−1).

Turning to t = T , the filtering equations are:

ξT |T−1 = FξT−1|T−1, (B.10)

PT |T−1 = FPT−1|T−1F
′ + CΩC ′, (B.11)

ỹT |T−1 = H̃ ′
T ξT |T−1, (B.12)

Σỹ,T |T−1 = H̃ ′
TPT |T−1H̃T , (B.13)

while the update equations are given by:

ξT |T = ξT |T−1 + PT |T−1H̃TΣ
−1
ỹ,T |T−1

(
ỹT − ỹT |T−1

)
= ξT |T−1 + PT |T−1rT |T , (B.14)

PT |T = PT |T−1 − PT |T−1H̃TΣ
−1
ỹ,T |T−1H̃

′
TPT |T−1 = PT |T−1 − PT |T−1NT |TPT |T−1. (B.15)

These equations define the vector rT |T and the matrix NT |T which are used as input for Kalman

smoothing.

While the smooth estimates for period T are equal to the update estimates for T , we are also

interested in the smooth estimates of the state variables and the corresponding covariance matrix

for period T − 1. These are determined from

ξT−1|T = ξT−1|T−2 + PT−1|T−2rT−1|T , (B.16)

PT−1|T = PT−1|T−2 − PT−1|T−2NT−1|TPT−1|T−2, (B.17)

where

rT−1|T = H̃T−1Σ
−1
ỹ,T−1|T−2

(
ỹT−1 − ỹT−1|T−2

)
+
(
F −KT−1H̃

′
T−1

)′
rT |T ,

KT−1 = FPT−1|T−2H̃T−1Σ
−1
ỹ,T−1|T−2,

NT−1|T = H̃T−1Σ
−1
ỹ,T−1|T−2H̃

′
T−1 +

(
F −KT−1H̃

′
T−1

)′
NT |T

(
F −KT−1H̃

′
T−1

)
.
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The smooth estimates for period T are used for the nowcasts, while the smooth estimates for period

T − 1 are similarly employed for the backcasts.

Define the (np+ s+ 1) × s matrix G such that

G′ =
[
Is 0s,np+1

]
,

with the consequence that zt = G′ξt. The backcast (T −1) and nowcast (T ) of zt are therefore given

by

zt|T = G′ξt|T , t = T − 1, T, (B.18)

while the covariance matrices are

Σz,t|T = G′Pt|TG. (B.19)

We can similarly compute the backcast and nowcast of yt as

yt|T = H ′ξt|T , (B.20)

and covariance matrices

Σy,t|T = H ′Pt|TH. (B.21)

Forecasting is also straightforward in this setup. Specifically, the forecasts of zT+h and yT+h for

h ≥ 1 are:

zT+h|T = G′ξT+h|T , (B.22)

yT+h|T = H ′ξT+h|T , (B.23)

with covariance matrices

Σz,T+h|T = G′PT+h|TG, (B.24)

Σy,T+h|T = H ′PT+h|TH. (B.25)

The required forecasts of the state variables and corresponding covariance matrices are determined

from

ξT+h|T = F hξT |T = FξT+h−1|T , (B.26)

PT+h|T = F hPT |T
(
F ′)h + h−1∑

j=0

F jCΩC ′(F ′)j = FPT+h−1|TF ′ + CΩC ′. (B.27)

To compute the projected value and the covariance matrix for a combination of variables in zt and

yt, we simply construct a matrix D from the corresponding columns of G and H and use this matrix

instead of G or H in the expressions above. We can thereafter proceed to compute the predictive

likelihood of the combination of variables as in Warne et al. (2017) and McAdam and Warne (2019),

using the actual values of the variables for the normal density with mean and covariance given by

the values of these objects for a fixed posterior value of (Φ,Ω, α), and average these likelihoods

conditional on the parameters over all the posterior draws.
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Section C: Bayesian VAR Models with Stochastic Volatility

The VAR model with stochastic volatility we consider is given by equation (A.1), but we now assume

that the innovations are independent and given by εt ∼ Nn(0,Ωt). The matrix Ωt is assumed to be

positive definite and parameterized as

Ωt = RΛtR
′, (C.1)

where R is an n×n lower triangular matrix with unit diagonal elements and with elements rij below

the diagonal, i > j. The n× n matrix Λt is diagonal and specified as

Λt = diag

⎡
⎢⎢⎢⎢⎣
s̄1 exp

(
λ1,t
)

...

s̄n exp
(
λn,t

)

⎤
⎥⎥⎥⎥⎦ , t = 1, . . . , T. (C.2)

The s̄i scaling parameters are assumed to be known, while λi,t is a univariate process which generates

heteroskedasticity with

λi,t = γλi,t−1 + ηi,t, i = 1, . . . , n, t = 1, . . . , T. (C.3)

The innovation ηi,t is assumed to be i.i.d. Gaussian with zero mean and variance φi, while the single

autoregressive parameter γ is assumed to be known and shared across the n stochastic volatility

components.

The modelling approach we follow relies greatly on Cogley and Sargent (2005) as it has been

implemented in the BEAR Toolbox; see Dieppe et al. (2016). The technical details on estimation

with stochastic volatility using the above setup are given in Dieppe et al. (2018), concerning their

standard model in Section 5.2.

The parameters to be estimated are the VAR coefficients, Φ, the elements of r−1 = (r−1
2 , . . . , r−1

n )

related to R−1 and to be discussed below, as well as the dynamic coefficients λ = {λi,t; i =

1, . . . , n; t = 1, . . . , T} and the heteroskedasticity parameters φ = (φ1, . . . , φn). Regarding the prior

distribution, it is assumed that Φ is independent of the other parameters. The same is true for

r−1 and for φ, while the prior for the dynamic coefficients is conditional on the heteroskedasticity

parameters. Furthermore, the individual r−1
i are also assumed to be independent of each other and

the same assumption is made regarding the heteroskedasticity parameters. Concerning the dynamic

coefficients, λi is independent of λj and only dependent on φi, but not on φj for i �= j.

A Minnesota-Type Prior for the VAR Parameters

The prior for the VAR coefficients is given by a standard Minnesota prior; see Doan et al. (1984).

This means that Φ has a multivariate Gaussian distribution with mean μΦ and covariance ΣΦ. A

number of hyperparameters determine these matrices. With ΣΦij,k
being the prior variance of Φij,k

for i, j = 1, . . . , n and k = 1, . . . , p, it is first assumed that

ΣΦii,k
=

(
λ∗
1

kλ
∗
3

)2

. (C.4)

– 14 –



The hyperparameter λ∗
1 gives the overall tightness, while λ∗

3 is the harmonic lag decay hyperparam-

eter. Furthermore,

ΣΦij,k
=

(
σ2i
σ2j

)(
λ∗
1λ

∗
2

kλ
∗
3

)2

, i �= j, (C.5)

where σ2i is the OLS residual variance, estimated from an AR(p) process with a constant for variable

i, where i = 1, . . . , n. Hence, the ratio σ2i /σ
2
j deals with scaling of the variables. The hyperparameter

λ∗
2 gives the cross-variable tightness.

Concerning the parameters on the constant, the prior variance for element i is given by

ΣΦi,0 = σ2i
(
λ∗
1λ

∗
4

)2
, (C.6)

where λ∗
4 is the tightness hyperparameter specific to Φ0.

Concerning the prior mean of Φ it may be noted that the n× (np+ 1) matrix μΦ is given by

μΦ =
[
μΦ0 μΦ1 0 · · · 0

]
. (C.7)

In the standard Minnesota prior case, the n×n matrix μΦ1 is diagonal with unit diagonal elements.

When estimating the BVAR with the standard stochastic volatility model through the BEAR Tool-

box, μΦ1 = aIn, where a is a known scalar parameter. The BVAR with stochastic volatility that

we estimate for the euro area real-time data is based on the same transformation of the observed

variables as the three DSGE models, but using all nine variables, like for the two BVAR models with

homoskedastic innovation. Since some of the observed variables are measured in first differences,

while some appear in levels, one may wish to consider the diagonal elements of μΦ1 to differ across

at least the type of variable, i.e., first difference or level. Although the BEAR Toolbox does not

support this directly, small changes to the code make such a simple enhancement possible.

Concerning the prior mean for the parameters on the constant, μΦ0 , we have tested with the

standard assumption of zero prior mean, as well as the assumption that μΦ0 = (1−a)ȳ0. The vector

ȳ0 is calibrated and given by the sample mean of the p presample values of the observed variables,

like in the case of the two BVARs with homoskedastic innovations. Overall, the former assumption

gives better density forecasts, especially for inflation marginally and jointly with real GDP growth,

and we have therefore decided to let μΦ0 = 0.

In the empirical study, we let λ∗
1 = 0.1, λ∗

2 = 0.5, λ∗
3 = 1, λ∗

4 = 2 and a = 0.5. We have studied

alternative values for these hyperparameters, such as a taking on various values between 0 and 1,

as well as testing with μΦ1 being diagonal and with the elements for the first differenced variables

being equal to ad, while the elements for the levels variables equal to al, but there does not appear

to be any direct gains from letting ad �= al. The alternative calibrations of the prior did not improve

the forecasting ability of the model overall. In addition, we have tested with a diffuse prior for the

constant term with a value of λ∗
4 = 100, as well as with λ∗

4 being 100 for the first differenced variables

and 2 for the levels variables. Although the selected value for λ∗
4 is not the standard one for, e.g.,

US data, it allows for more sensible point and density forecasts for the euro area real-time data in

connection with the chosen stochastic volatility setup.
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The Prior Setup for Stochastic Volatility

The prior on R is implemented through a prior on each row of R−1. To clarify notation, let

R−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0

r−1
21 1 0 · · · 0 0

r−1
3,1 r−1

3,2 1 0 0

...
...

. . .
...

r−1
n−1,1 r−1

n−1,2 rn−1,3 1 0

r−1
n,1 r−1

n,2 r−1
n,3 · · · r−1

n,n−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Denote by r−1
i a column vector with the non-zero and non-unit elements of row i in R−1 for i =

2, . . . , n. Hence, this vector has i− 1 elements and is given by

r−1
i =

⎡
⎢⎢⎢⎢⎣
r−1
i,1

...

r−1
i,i−1

⎤
⎥⎥⎥⎥⎦ , i = 2, . . . n.

The parameters in r−1 above are given by the n− 1 vectors r−1
i .

The prior distribution for r−1
i is assumed to be independent of r−1

j , i �= j, and to be multivariate

normal with mean μr−1
i

and covariance Σr−1
i

. The BEAR Toolbox is calibrated to use a zero mean

and covariance equal to 10000 times the identity matrix, as there are no obvious prior values. We

have tested using a less diffuse covariance matrix for the euro area real-time data (10 times the

identity), but in our experience this does not have a great effect on the density forecasts.

Concerning the dynamic coefficients, the prior for λi|φi can either be expressed jointly or period-

by-period. Below we give the joint formulation and refer readers to the BEAR Toolbox technical

manual for details on the period-by-period case; see Dieppe et al. (2018).

The joint formulation is based on the sparse matrix approach of Chan and Jeliazkov (2009), where

the value of λi,t depends on the value of λi,0 and the innovation values ηi,1, . . . , ηi,t. The stochastic

volatility process in (C.3) may be stacked as

Γλi = ηi, i = 1, . . . , n, (C.8)

with

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0

−γ 1 0 · · · 0 0

0 −γ 1 0 0

...
. . . . . .

...

0 1 0

0 0 0 −γ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, λi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λi,1

λi,2

λi,3
...

λt,T−1

λi,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ηi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γλi,0 + ηi,1

ηi,2

ηi,3
...

ηi,T−1

ηi,T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Notice that Γ is a T × T matrix and we let λi,0 be the initial value of the process. It is assumed

that this scalar variable is normal with zero mean and variance

σ2λi,0
=
φi
(
ω − 1

)
γ2

,

where ω is a known variance parameter. It can furthermore be shown that

ηi ∼ NT

(
0, φiIω

)
,

where Iω is a T × T diagonal matrix with ω in element (1,1) and unity elsewhere on the diagonal.

Consequently,

λi ∼ NT

(
0, φiΓ

−1Iω(Γ
′)−1

)
.

The BEAR Toolbox has calibrated ω = 10000 to allow for a very diffuse initial condition, but this

value is easy to change. To examine the dependence on this value, we have also tried with ω = 10,

but this did not have any appreciable effect on the density forecasts for the vintages we tried. It

may also be noted that with ω being very large, the value of φi will not matter much for the prior

on the dynamic coefficients, unless it is small enough to counteract ω. Furthermore, our empirical

study uses γ = 0.85, but we have also tried alternative values including unity for the random walk

version of stochastic volatility.

Finally, the prior for φi is independent of φj, i �= j, and assumed to follow an inverted Gamma

distribution. The BEAR Toolbox uses the following parameterization of its density

p
(
φi
∣∣α0, δ0

)
=

(
δ0/2

)α0/2

Γ
(
α0/2

) φ
−(α0/2)−1
i exp

(−δ0
2φi

)
,

where Γ(·) is the gamma function. The shape and scale parameters α0 and δ0, respectively, need to

be determined by the user. If a weakly informative prior is preferred, then values such as α0 = δ0 =

0.001, or lower, may be considered. In our empirical study we use these values.

Posterior Sampling

The posterior distributions are provided in the technical manual of the BEAR Toolbox. The posterior

sampler is mainly a Gibbs algorithm, but extended with a Metropolis-Hastings step for the dynamic

coefficients, λi,t, as its conditional posterior distribution is not fully known; see also Cogley and

Sargent (2005). The algorithm is initialized by, e.g., estimating the VAR model with OLS and

computing the scaling coefficients from the OLS estimate of Ω through the Choleski decomposition

Ω = RΛR′, where s̄i is equal to the ith diagonal element of the estimate of Λ. Details on the

initialization and the posterior sampler are presented by Dieppe et al. (2018) in Algorithm 5.2.1.

Real-Time Backcasts, Nowcasts and Forecasts Under Stochastic Volatility

The procedure we employ for the forecasting purposes of the BVAR with stochastic volatility (SV)

is nearly identical to the one in Appendix B. We therefore focus the discussion below on the features

that are different.
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First, since the stochastic volatility (SV) BVAR already has the zt variables in the yt vector,

the s equations for zt can be dispensed with, making the state-space formulation from Appendix B

simpler here. For example, the matrix K = Inp+1, while the G matrix can be also skipped.

Second, as in the case of the SoC and PLR BVARs, the parameters of the SV BVAR are estimated

up to period T − 2 for each vintage T . At this stage, the innovation covariance matrix is given by

ΩT−2. If we assume that γ = 1, such that the n stochastic volatility processes in (C.3) are random

walks, then projecting ΩT−2 forwards we note that λi,T+h|T−2 = λi,T−2, h = −1, 0, . . . , h∗ and

i = 1, . . . , n, with the consequence that ΩT+h|T−2 = ΩT−2.

Suppose instead that γ < 1, as in our empirical application, and let λt and s̄ be n-dimensional

vectors with typical element λi,t and s̄i, respectively. The projections of λT−2 forwards are then

λT+h|T−2 = γλT+h−1|T−2 = γh+2λT−2, h = −1, 0, 1, . . . , h∗.

It then follows that

ΛT+h|T−2 = diag
(
s̄� exp

(
λT+h|T−2

))
,

where

exp
(
λT+h|T−2

)
=
(
exp
(
λT−2

))γh+2

=
(
exp
(
λT+h−1|T−2

))γ
.

Finally, we have that

ΩT+h|T−2 = RΛT+h|T−2R
′.

Notice that the limit expression of the covariance matrix as h → ∞ is simply Rdiag(s̄)R′, such that

the scaling factors give the long run forecast error variances.

– 18 –



Section D: Probability Integral Transform

The probability integral transform (PIT) has long been used to assess if a model is correctly specified.

An early paper which considered this idea for density forecasting purposes in econometrics is Diebold

et al. (1998), but it has earlier been emphasized by Dawid (1984). Rosenblatt (1952) shows that for

a correctly specified model

πj,T+1|T = Fj

(
yj,T+1

∣∣YT

)
, j = 1, . . . , n,

is independent and uniformly distributed on the unit interval, where Fj(·) is the cumulative dis-

tribution function (cdf). With Φ(·) being the cdf of the normal distribution, Smith (1985) further

noted that zj,T+1|T = Φ−1(πj,T+1|T ) is i.i.d. N(0, 1); see also Berkowitz (2001).

Amisano and Geweke (2017) construct a test statistic based on the normality property of the

inverse cdf; details are available in their Online Appendix. Specifically, let

π
(i)
j,T+1|T = Φ

(
y
(o)
j,T+1

∣∣∣∣μ(i)j,T+1|T , σ
(i)
jj,T+1|T

)
, i = 1, . . . , N

where μ(i)j,T+1|T is the one-step-ahead point forecast of observed variable j = 1, . . . , n using the ith

posterior draw of θ, while σ(i)jj,T+1|T is the one-step-ahead forecast error standard deviation of variable

j using θ(i).

Next, the Monte Carlo average of the N values of the uniform variable is taken such that

πj,T+1|T =
1

N

N∑
i=1

π
(i)
j,T+1|T , (D.1)

while

zj,T+1|T = Φ−1
(
πj,T+1|T

)
. (D.2)

Under the assumption that the model is correctly specified, or similarly that the density forecasts

are well calibrated, the variable zj,T+1|T is normally distributed with zero mean and unit variance.

This assumption is tested in Amisano and Geweke (2017) using the first q moments and p lags of

the zj,T+1|T process. They now consider the test statistic

AG = T1
(
m̄T1 −mq+p

)′
Ω−1

(
m̄T1 −mq+p

) d→ χ2
q+p, (D.3)

where T1 is the number of one-step-ahead forecasts,

m̄T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T−1
1

∑T1
T=1 zj,T+1|T

...

T−1
1

∑T1
T=1 z

q
j,T+1|T(

T1 − 1
)−1∑T1

T=2 zj,T+1|T zj,T |T−1

...(
T1 − p

)−1∑T1
T=p+1 zj,T+1|T zj,T+1−p|T−p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, mq+p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1
...

μq

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The scalar μr is the rth population moment of a normal distribution. The matrix Ω is given by

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2 μ3 · · · μq+1 01×p

μ3 μ4 · · · μq+2 01×p

...
...

...
...

μq+1 μq+2 · · · μ2q 01×p

0p×1 0p×1 · · · 0p×1 Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

while

μr =

⎧⎪⎪⎨
⎪⎪⎩
∏r/2

i=1(2i − 1) if r is odd,

0 otherwise.

In practice, Amisano and Geweke (2017) let q = p = 4, such that μ1 = μ3 = μ5 = μ7 = 0, while

μ2 = 1, μ4 = 3, μ6 = 15 and μ8 = 105.

The vector m̄T1 takes into account that if the model is well calibrated zj,T+1|T is not serially

correlated. However, for zj,T+h|T is it generally not true as the forecast errors will follow a moving

average process of order h−1 in that situation. Consequently, for h-step-ahead density forecasts the

last p elements of m̄Th
need to take this into account. Specifically, we have that for h-step-ahead

forecasts:

m̄Th
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T−1
h

∑Th
T=1 zj,T+h|T

...

T−1
h

∑Th
T=1 z

q
j,T+h|T(

Th − h
)−1∑Th

T=h+1 zj,T+h|Tzj,T |T−h

...(
Th − (h− 1 + p)

)−1∑Th
T=h+p zj,T+h|Tzj,T+h−p|T−p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

In the empirical study, the nowcasts of real GDP growth and GDP deflator inflation are typically

one-step-ahead forecasts once the theoretical autocorrelation pattern of the forecast errors is taken

into account. Similarly, the h-step-ahead forecasts are therefore typically (h + 1)-step-ahead. The

reason for the word typically is that for some vintages, the data for the backcast period is also

missing and needs to be predicted prior to predicting the nowcast and the forecasts; see McAdam

and Warne (2019, Table 4). Hence, the one-step-ahead forecast is actually the backcast for the

relevant vintages. For simplicity, these vintages are dropped for the PIT analysis, i.e., 3 vintages for

real GDP growth and 22 vintages for GDP deflator inflation. Moreover, since the number of vintages

is quite low, we limit the PIT analysis to nowcasts and one-step-ahead forecasts, and consider the

cases (q, p) = (2, 2) and (q, p) = (4, 2).

The test results are displayed in Table I.9 for the marginal density forecasts of real GDP growth

and GDP deflator inflation. The uniformity of the PIT does not hold for multivariate forecasts;

see Genest and Rivest (2001). These forecasts are therefore not tested here, but as pointed out by
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Gneiting et al. (2008), an option is then to utilize the Box density ordinate transform (BOT); see

Box (1980) for details. Based on the asymptotic distribution of the tests, the marginal real GDP

growth density forecasts appear not to be well calibrated for any model, with the BVAR models

displaying particularly large test values, especially when four moments are included. Concerning the

marginal inflation forecasts, only the SWFF model is found not to be well calibrated, as we may

indeed “suspect” from the spaghetti plots in Figure 2 of the paper.

It is also noteworthy that some of the combination methods do better in the comparison exercise

than the individual models for real GDP growth and the joint forecasts, while they cannot improve

the density forecasts of inflation. This is consistent with the PIT results as most models that forecast

inflation relatively well also seem to have fairly well calibrated inflation density forecasts.

As a complement to the formal tests, histograms are shown in Figures I.3–I.4 for the estimated

πj,T+h+1|T values for h = 0, 1 that underlie the tests. The graphs are based on a bin width of 0.1

and if a model is well calibrated, i.e., the π’s are uniform, then the frequency of occurrence in large

samples should match the height of the uniform at 0.1. Concerning real GDP growth in Figure I.3, it

can be seen that the bulk of estimates fall into the bins below 0.5. This is consistent with the mean

errors being negative in Table I.3; see Appendix G for details. Concerning inflation in Figure I.4,

the histograms display a more uniform-like shape for all models except the SWFF model. However

and consistent with the mean errors, there is a tendency for a larger share of the estimated π’s to

lie in the bins above 0.5.
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Section E: Density Forecast Combination Methods

Static Optimal Prediction Pools

Static optimal predictions pools were introduced by Hall and Mitchell (2007) as a means to improve

the density forecasts of individual forecasters or models by computing the optimal linear combination

of these forecasts. The basic idea is to maximize the log predictive score of a linear combination

of the predictive likelihoods of the models in the pool. This linear combination is constrained such

that the model weights are constant, non-negative and sum to unity. As a result, the combination

of the predictive likelihoods is also a predictive likelihood and the log predictive score is formed by

accumulating the log of the pooled predictive likelihoods.

Let wi,h be the weight on model i for h-step-ahead forecasts, satisfying wi,h ≥ 0 and
∑M

i=1 wi,h = 1.

The log predictive score of the static optimal pool is therefore given by

S
(SOP)
T :Th,h

=

Th∑
t=T

log

(
M∑
i=1

wi,hp
(i)
t+h|t

)
, (E.1)

where the predictive likelihood of the pool is given by the term being logged on the right hand side

of this equation. Estimates of the weights are obtained by maximizing the log score in (E.1) with

respect to the weights and subject to their restrictions.

This forecast combination is referred to as static since the weights are treated as constant over

time. A recursive approach to the estimation of these weights is more realistic when viewing the

problem of comparing models in real time. In that case, the weights of the models can change due

to re-optimization with more recent information. Hall and Mitchell (2007) motivate the use of static

optimal pools on the grounds that the weights are chosen to minimize the “distance” between the

forecasted and the unknown true predictive density in the sense of the Kullback-Leibler information

criterion (KLIC); see Kullback and Leibler (1951). In contrast with combination approaches such

as Bayesian Model Averaging (BMA), discussed below, Geweke and Amisano (2011, 2012) point out

that static optimal prediction pools do not rely on the assumption that one of the models in the

pool is true, i.e., the approach allows for incomplete models with the effect that all of the models in

the pool may be false; see Geweke (2010).7

Dynamic Prediction Pools

Dynamic prediction pools, suggested by Del Negro et al. (2016), directly allow the weights to vary as

well as to be correlated over time. While their setup is based on two models, Amisano and Geweke

(2017) extends the dynamic prediction pool from two to three models. In fact, the approach in

Amisano and Geweke allows for any finite number of models and it is for such a general case that

we present dynamic prediction pools below. Accordingly, the number of models is, as before, equal

7 See also Pauwels and Vasnev (2016) for further analysis of optimal prediction pool weights and the underlying
optimization problem, and Opschoor et al. (2017) for extensions to alternative scoring rules.
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to M and the log predictive score for the dynamic prediction pool is:

S
(DP)
T :Th,h

=

Th∑
t=T

log

(
M∑
i=1

wi,t+h|tp
(i)
t+h|t

)
, (E.2)

where wi,t+h|t is the weight on model i for h-step-ahead density forecasts at t, where all weights are

non-negative and sum to unity over i.

To model the time variation of the weights, we follow Amisano and Geweke (2017) and consider

a parsimoniously parameterized M -dimensional process for the state variable

ξt = ρξt−1 +
√(

1 − ρ2
)
ηt, t = T, . . . , Th, (E.3)

where 0 ≤ ρ ≤ 1 is a scalar and ηt ∼ i.i.d.N(0, IM ).8 The ρ parameter is interpreted as a “forgetting

factor” for dynamic pools by Del Negro et al. (2016) since with ρ < 1 there is discounting of past

information. The parameterization of ξt in (E.3) ensures that its covariance is the identity matrix

when ρ < 1, while ξt is constant (static) otherwise.

The weights are determined from a logistic transformation of the individual elements of the state

vector, ξi,t which ensures that each element is non-negative and that the sum of the elements is

unity:

wi,t =
exp
(
ξi,t
)

∑M
j=1 exp

(
ξj,t
) , i = 1, . . . ,M. (E.4)

The vector wt is consequently M -dimensional with individual entries given by the model weights.

As pointed out by Amisano and Geweke (2017, Appendix E.4) the specification in (E.4) implies a

symmetric prior across weights.

To estimate the log predictive score in (E.2) conditional on ρ, Amisano and Geweke (2017) follow

the approach in Del Negro et al. (2016) and employ the Bayesian bootstrap particle filter ; see, e.g.,

Gordon et al. (1993) and Herbst and Schorfheide (2016) for details and further references. This

filter is initialized as follows: At t = T − 1, draw N particles from the unconditional distribution

of ξT−1 and map these into wi,T−1 using (E.4), while each particle is assigned equal weight; i.e., for

i = 1, . . . ,M and n = 1, . . . , N

ξ
(n)
T−1 ∼ N

(
0, IM

)
,

w
(n)
i,T−1 =

exp
(
ξ
(n)
i,T−1

)
∑M

j=1 exp
(
ξ
(n)
j,T−1

) ,
W

(n)
T−1 = 1.

During the recursions of the bootstrap particle filter for t = T, . . . , Th, each iteration involves

three steps: forecasting, updating, and selection. The forecasting step concerns propagating the N

8 For the implementation of the dynamic prediction pool in Del Negro et al. (2016), they have a univariate process
similar to (E.3), but also allow for a drift parameter μ and a standard deviation σ. The process for ξ in (E.3) can be
enriched in various ways, but for the sake of parsimony we only allow for one free parameter.
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particles forward by drawing innovations η(n)t ∼ N(0, IM ) such that

ξ̃
(n)
t = ρξ

(n)
t−1 +

√(
1 − ρ2

)
η
(n)
t ,

w̃
(n)
i,t =

exp
(
ξ̃
(n)
i,t

)
∑M

j=1 exp
(
ξ̃
(n)
j,t

) ,
for i = 1, . . . ,M and n = 1, . . . , N . Next, the incremental weights are calculated as

ω̃
(n)
t = p

(
x
(m)
t

∣∣w̃(n)
t ,I(P)

t−h,P
)
=

M∑
i=1

w̃
(n)
i,t p

(
x
(m)
t

∣∣I(i)
t−h, Ai

)
, n = 1, . . . , N,

where these weights depend on ρ via w̃(n)
t , a vector with w̃(n)

i,t in element i, and with I(P)
t being the

joint information set of the pooled models. Notice that the incremental weights are formed from

the h-steps-ahead predictive likelihoods of the individual models based on measured values of the

predicted variables in period t, x(m)
t . Furthermore, we here let x(m)

t denote the observations used

when computing the weights and these may be the actual values, x(a)t , and/or taken from the current

vintage.

The updating step consists in recomputing the weights according to

W̃
(n)
t =

ω̃
(n)
t W

(n)
t−1

(1/N)
∑N

j=1 ω̃
(j)
t W

(j)
t−1

.

Notice that the sum of the updated weights W̃ (n)
t over all particles is equal to N . If all the weights

from recursion t−1 are equal, then the updated weights are proportional to the incremental weights

and therefore the particle likelihood values.

For the selection step we first compute the effective sample size (ESS) according to

ESSt =
N

(1/N)
∑N

n=1

(
W̃

(n)
t

)2 .
On the one hand, if ESSt < δ∗N for a suitable value of the hyperparameter δ∗, where 0 < δ∗ < 1, the

particles are resampled with multinomial resampling, characterized by support points and weights

{ξ̃(n)t , w̃
(n)
t , W̃

(n)
t }Nn=1. Let {ξ(n)t , w

(n)
t ,W

(n)
t }Nn=1 denote a swarm of N i.i.d. draws where the weights

are given by W (n)
t = 1. On the other hand, if ESSt ≥ δ∗N , the weights W (n)

t = W̃
(n)
t while the state

variables ξ(n)t = ξ̃
(n)
t and the corresponding model weights w(n)

t = w̃
(n)
t .

The conditional predictive likelihood of the dynamic pool in recursion t is approximated with

p
(P)
t+h|t

(
ρ
)
= p
(
x
(a)
t+h

∣∣I(P)
t ,P; ρ

)
=

M∑
i=1

wi,t+h|t(ρ)p
(
x
(a)
t+h

∣∣I(i)
t , Ai

)
, (E.5)

where the particle weights depend on the parameter ρ, and the weights w(n)
i,t+h|t are computed by

iterating forward using the law of motion in (E.3). That is

wi,t+h|t(ρ) = E
[
wi,t+h

∣∣I(P)
t ,P; ρ

]
≈ 1

N

N∑
n=1

w
(n)
i,t+h(ρ)W

(n)
t ,
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where for each particle n

ξ
(n)
i,t+s(ρ) = ρξ

(n)
i,t+s−1 +

√(
1 − ρ2

)
η
(n)
t+s,

w
(n)
i,t+h(ρ) =

exp
(
ξ
(n)
i,t+h(ρ)

)
∑M

j=1 exp
(
ξ
(n)
j,t+h(ρ)

) ,
for s = 1, . . . , h, and where η(n)t+s is a draw from an M -variate standard normal distribution.

In a real-time setting, the information lag needs to be taken into account. Consider the convenient,

albeit mechanical, assumption that the information lag is equal to the observation lag. With annual

revisions data, this means that the predictive likelihoods for the individual models are lagged four

periods when computing the incremental weights. Since measured values of x may be available for

periods τ −3, τ −2 and τ −1 in vintage τ , a shorter information lag is feasible. Unless the measured

values are equal to the actual values for these time periods, however, the bootstrap particle filter

requires two loops, where for each vintage τ the iterations from T until τ are (at least partly)

revisited. The assumption that the information lag is equal to the observation lags means that the

second loop can be avoided. Alternatively, it may also be skipped if one assumes that measured

values are well approximated by the actual values, i.e., that the revisions are sufficiently small that

they can be neglected.9

Amisano and Geweke (2017) apply the bootstrap particle filter over a fine grid of values for ρ and

compute ρ̂τ by maximizing the log score

ρ̂τ,h = argmax
ρ

τ−h∑
t=T

log
(
p
(
x
(m)
t+h

∣∣I(P)
t ,P; ρ

))
, τ = T, . . . , Th (E.6)

where the predictive likelihood on the right hand side are computed as in (E.5), but with the

measured value instead of the actual value. This means that the first period τ when the h-step-

ahead predictive likelihood of the individual models can be observed occurs at τ = T +h. Taking the

real-time aspect fully into account means that the information lag, l ≤ k, is added to this number.

It follows that for all τ less than T + h + l, a unique value of ρ cannot be determined as there are

no data on the predictive likelihoods available. This initialization problem may be dealt with by

replacing the unobserved predictive likelihood values with a positive constant, such as 1/M , with

the consequence that all values of ρ from T up to T + h + l − 1 obtain the same log score when

computing the weights. As the number of particles becomes very large, this amounts to giving all

models the same weight. Furthermore, the upper limit of the sum on the right hand side of (E.6)

should also take the information lag into account. Hence, we set it equal to τ − h− l.

9 If only data on x from vintage τ are used as measured values they are all subject to revision and the double loop
has to be executed from period T for each vintage τ . On the other hand, if actuals are used up to period τ − 4
and measured values from vintage τ for periods τ − 3, τ − 2 and τ − 1, then the double loop would start in τ − 4
since the earlier computations were run for vintage τ − 1. Finally, if the measured values for τ − 3, τ − 2 and τ − 1
are approximated by the actual values, then the double loop can be dispensed with. For each of these cases, an
information lag of one is applied.
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With the sequence {ρ̂t}τt=T , the real-time log predictive score of the dynamic prediction pool is

then estimated by

S
(DP)
T :τ,h =

τ∑
t=T

log
(
p
(P)
t+h|t

(
ρ̂t,h
))
.

According to Amisano and Geweke (2017), this procedure may be interpreted as a Bayesian analysis

based on a flat (uniform) prior on ρ.

Resampling was originally employed by Gordon et al. (1993) to reduce the effects from sample

degeneracy—a highly uneven distribution of particle weights—as this part of the selection step

adds noise; see Chopin (2004). It also allows for the removal of low weight particles with a high

probability and this is very practical as it is preferable that the filter is focused on regions with a high

probability mass. However, this also means that resampling may produce sample impoverishment

as the diversity of the particle values is reduced. The hyperparameter δ∗ provides a ‘crude’ tool

for balancing the algorithm against the pitfalls of degeneracy or impoverishment by ensuring that

resampling takes place but does not occur ‘too often’.10

Del Negro et al. (2016) use a multinomial distribution for the selection step with δ∗ = 2/3, but as

pointed out by, for example, Douc et al. (2005), this resampling algorithm produces an unnecessarily

large variance of the particles. Moreover, and as emphasized by Hol et al. (2006), ordering of

the underlying uniform draws improves the computational speed considerably. Commonly used

alternative resampling algorithms are faster and have a smaller variance of the particles. Systematic

resampling, introduced by Kitagawa (1996) and also emphasized by Carpenter et al. (1999), is one

such approach and it is very easy to implement, comparatively fast, and, according to Doucet and

Johansen (2011), as it often outperforms other sequential resampling schemes. It is a faster version

of stratified resampling (Kitagawa, 1996), where instead of drawing N uniforms only one is required,

while stratification and, simultaneously, sorting is dealt with via the same simple affine function. A

drawback with systematic resampling is that it generates cross-sectional dependencies among the

particles, which also makes it difficult to establish its theoretical properties; see Chopin (2004). For

an overview of sequential resampling schemes see, e.g., Hol et al. (2006), who also discuss theoretical

criteria for choosing between multinomial, stratified, systematic and residual resampling (suggested

by Liu and Chen, 1998); Douc et al. (2005), who also study large sample behavior; and more recently

Li et al. (2015), who also discusses distributed or parallel algorithms.11

Bayesian Model Averaging

BMA provides a coherent framework for accounting for model uncertainty; see Hoeting et al. (1999).

The standard BMA weights rely on posterior model probabilities and therefore require the calculation

of marginal likelihoods over a set of models which predict the same observables. The DSGE and

10 A more direct approach to combatting sample impoverishment is based on taking the particle values into account
when resampling; see, e.g., Doucet and Johansen (2011) for discussions on the resample-move algorithm of Gilks and
Berzuini (2001) and the block sampling algorithm of Doucet et al. (2006).
11 Since the bootstrap particle filter will spend a considerable share of the computational time in the resampling stage,
especially when δ∗ is high, the precise implementation of the selected resampling scheme is also important; see also
Warne (2022b, Section 8.4) for some details on how to implement the standard sequential algorithms.
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VAR models we examine, however, do not satisfy this condition: the VAR models predict all nine

observable variables comprising the full information set, while the DSGE models do not predict all

variables.

However, an alternative BMA weighting scheme may be obtained by only using the predictive

likelihood values of the variables of interest (xt) and a prior for the weights; see Eklund and Karlsson

(2007) for discussions on the general idea. Specifically, BMA weights may be obtained as in Del Negro

et al. (2016, Section 3) such that

ŵi,t,h =
ŵi,t−1,hp

(
x
(m)
t

∣∣I(i)
t−h, Ai

)
∑M

j=1 ŵj,t−1,hp
(
x
(m)
t

∣∣I(j)
t−h, Aj

) , (E.7)

for t = T +1, . . . , Th, with ŵi,T,h denoting the prior predictive probability that wi = 1. In this case,

the model weights at t are built using only the predictive likelihood values up to period t. As long

as ŵi,T,h = 1 for some model i does not hold, these BMA weights will be positive for several models

until the recursive log score of one model dominates the others sufficiently. In the empirical sections

of the paper, we primarily let ŵi,T,h = 1/M .

It should be kept in mind that the predictive likelihood generated BMA weights are based on the

following assumption:

p
(
xt
∣∣I(i)

t−h, Ai

)
= p
(
xt
∣∣I(P)

t−h, Ai

)
.

That is, the additional information available in I(P)
t−h relative to I(i)

t−h does not change the density

forecast of xt for any model i = 1, . . . ,M . This holds trivially for the VAR models, but also for the

three DSGE models since the “missing” variables in I(i)
t−h are not predicted by these models.

The BMA weights in (E.7) are based on the assumption that x(m)
t is observed at t. As discussed

in Section 2 of the paper, the real-time dimension means the BMA weights need to be adjusted by

lagging the predictive likelihoods on the right hand side by the information lag. In other words, we

replace equation (E.7) with

ŵi,t,h =
ŵi,t−1,hp

(
x
(m)
t−l

∣∣I(i)
t−h−l, Ai

)
∑M

j=1 ŵj,t−1,hp
(
x
(m)
t−l

∣∣I(j)
t−h−l, Aj

) . (E.8)

Like in the cases of the prediction pools, the first period when an h-step-ahead predictive likelihood

value is observed occurs at T + h + l. For t = T + 1, . . . , T + h + l − 1 we can therefore replace

the predictive likelihood values in (E.8) with a positive constant such that ŵi,t,h = ŵi,T,h, the prior

predictive probability of model i.

The predictive likelihood for the BMA combination is given by

p
(
x
(a)
t+h

∣∣I(P)
t ,P) = M∑

i=1

ŵi,t,hp
(
x
(a)
t+h

∣∣I(i)
t , Ai

)
,

from which it is straightforward to compute the log predictive score, denoted by S
(BMA)
T :Th,h

, of this

density forecast combination method.
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Dynamic Model Averaging

Raftery et al. (2010) proposed a model combination method, called dynamic model averaging (DMA),

where the weights of the log predictive score may be regarded as depending on a hidden Markov

process, st, as in Waggoner and Zha (2012), but where the estimates of the Markov transition

probabilities are approximated. Specifically, Raftery et al. (2010) suggest to estimate the weights as

follows

wi,t+h|t =
ŵϕh

i,t,h∑M
j=1 ŵ

ϕh

j,t,h

, (E.9)

where ϕ is a parameter such that 0 ≤ ϕ ≤ 1. Notice that the weights ŵi,t,h on the right hand side

of equation (E.9) correspond to the weights from the recursive BMA calculation. Accordingly, if

ϕ = 1 then DMA is identical to BMA, and if ϕ = 0 then DMA implies that the weights are equal

(1/M) for all time periods. The parameter ϕ is interpreted as a forgetting factor, where lower values

means that past forecast performance is given a lower weight; see also Koop and Korobilis (2012).

Provided that ϕ < 1, it follows that the DMA weights approach the equal weights as h increases.

The predictive likelihood for the DMA forecast combination is given by

p
(
x
(a)
t+h

∣∣I(P)
t ,P) = M∑

i=1

wi,t+h|tp
(
x
(a)
t+h

∣∣I(i)
t , Ai

)
,

from which the log predictive score, denoted by S(DMA)
T :Th,h

, can be directly computed.

Amisano and Geweke (2017) estimate the forgetting factor by recursively maximizing the log

predictive score over a grid of ϕ values, similar to the case for ρ in in the subsection on dynamic

prediction pools above. They suggest that the procedure can be given a Bayesian interpretation

where the researcher assigns a flat (uniform) prior on ϕ. DMA is also considered by Del Negro et al.

(2016), who consider three values of ϕ below but close to unity.

Log Score Weights and KLIC Weights

Jore et al. (2010) suggests to make use of weights based on the scoring function applied to compare

models and density combination methods. For the log predictive score this amounts to setting the

recursive weights equal to

wi,h,t =
exp

(
S
(i)
T :t−l−h,h

)
∑M

j=1 exp
(
S
(j)
T :t−l−h,h

) , i = 1, . . . ,M, t = T + l + h, . . . , Th, (E.10)

while the weights are initialized at fixed values for t = T, . . . , T + l+h−1. Jore et al. (2010) assume

that the information lag is equal to l = 1 and they refer to this weighting scheme as a recursive one.

Since all combination methods but the fixed weights are recursive, we refer to this density forecast

combination method as the log score (LS) approach. It is interesting to note that the LS weights

in (E.10) are identical to the BMA weights in (E.8), provided that equal weights are used for the

initial conditions.
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It may be noted that the LS weighting scheme is similar to the KLIC weighting scheme suggested

by Mitchell and Hall (2005). The KLIC weights for model i and forecast horizon h are given by

wi,h,t =
exp
(−Δi,h,t

)
∑M

j=1 exp
(−Δj,h,t

) , (E.11)

where

Δi,h,t = KLICi,h,t − min
j=1,...,M

KLICj,h,t.

The KLIC estimate for model i at t, taking the information lag and the forecast horizon into account,

is

KLICi,h,t =
1

t− l − h− T

t−l−h∑
τ=T

log fτ
(
x
(m)
τ+h

∣∣Iτ

)− 1

t− l − h− T
S
(i)
T :t−l−h,h,

where fτ (x
(m)
τ+h|Iτ ) is the “true” but unknown density for predicting xτ+h. For the KLIC based

weights this true density cancels out when determining Δi,h,t and the resulting weight for model i

at t for the h-step-ahead forecasts is therefore the average log score of model i minus the average log

score of the worst performing model up to that period. The latter term cancels out in equation (E.11)

with the effect that the KLIC weights are based on the average log score rather than the log score,

as in equation (E.10).12 This also means that the KLIC based approach has a DMA interpretation,

but where the “forgetting factor” recursively becomes smaller with t in 1/(t− l − h− T ) and larger

with h, where the latter is a property shared with DMA.

12 Keeping in mind that exp(ab) = (exp(b))a it follows that the LS and KLIC weights are not equal, except when
t = T + l + h+ 1.
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Section F: Data and Transformations

Table I.1 lists the observable variables and expresses their different treatment across the DSGE

and BVAR models. The SW model uses seven observables: real GDP, private consumption, total

investment, real wages, total employment, the GDP deflator, and the short-term nominal interest

rate (given by the three-month EURIBOR). For the SWU model there is the addition of the unem-

ployment rate, and for SWFF there is the addition of the financial lending spread. The BVARs, by

contrast, use all nine observables (albeit mostly with a different transformation, see below).

For the DSGE models and the BVAR with heteroskedastic innovations (stochastic volatility),

the first five observables are transformed into quarterly growth rates by the first difference of their

logarithm multiplied by 100, whilst the BVARs with homoskedastic innovations instead use the log

level of these variables multiplied by 100. The inflation time series is obtained as the first difference

of the log of the GDP deflator times 100 and the same transformation is used in all models. The final

three observables (r, u and s) are also defined in the same manner across the DSGEs and BVARs

with the interest rate and spread being expressed in annualized percentage terms. As in Smets et al.

(2014), we only consider data from 1979Q4, such that the growth rates are available from 1980Q1.

All variables are available at a quarterly frequency, except for the unemployment and the interest

rate series which exist at a monthly frequency.

The euro area real-time database (RTD), on which these models are estimated and assessed, is

described in Giannone et al. (2012). To extend the data back in time, we follow Smets et al. (2014)

and McAdam and Warne (2019) and link the real-time data to various updates from the area-wide

model (AWM) database; see Fagan et al. (2005). The exception is the spread which is not included

in the RTD vintages nor in the AWM updates.

The RTD covers vintages starting in January 2001 and has been available on a monthly basis

until early 2015 when the vintage frequency changed from three to two per quarter. We consider

the vintages from 2001Q1–2019Q4 for estimation and forecasting. For more detailed information on

the real-time vintages until 2014Q4, see McAdam and Warne (2019), while the Online Appendix in

Warne (2022a, Table B.2) displays the ragged edge until 2019Q4.
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Section G: Estimation of the Models & Point Forecasts

I. Estimation of the Models

The real-time euro area dataset is extensively discussed in McAdam and Warne (2019), including

how these vintages can be extended back in time until 1970 using vintages from the area-wide model

database; see also Smets et al. (2014). Below, we use an extended sample of vintages from the euro

area real-time database, i.e., from 2001Q1 until 2019Q4 instead of until 2014Q4. The three DSGE

models in McAdam and Warne (2019) are estimated using observations from 1985Q1, while 1980Q1–

1984Q4 is used as a training sample. We also estimate the BVAR models using observations from

1985Q1, while the initialization vector X0 is built from observations prior to this date. Specifically,

the three BVAR models we study below have p = 4 lags such that X0 is formed by observations

from 1984. Details on the data transformations and the variables included in the various models are

provided in the Online Appendix, Section F.

The predictive likelihoods of the DSGE models have previously been estimated until the vintage

from 2014Q4 and the Bayesian estimation approach is discussed in McAdam and Warne (2019), while

the extension until 2019Q4 used below follows the same procedure. In their study, 750,000 posterior

draws of the parameters of each DSGE model—using the random-walk Metropolis sampler—have

been computed on an annual basis for the Q1 vintages, reflecting how often such models are typically

re-estimated by policy institutions in practice. The Q1 parameter draws are then also used for the

Q2 until Q4 vintages within the same year. Treating the first 250,000 draws as a burn-in period of the

sampler, the predictive likelihoods for backcasts, nowcasts and up to eight-quarter-ahead forecasts

have thereafter been estimated using 10,000 of the remaining 500,000 draws, where each used draw

is separated by 50 draws.

The parameters of the BVAR models are estimated by trimming the data such that the last two

time periods of each vintage are discarded. Furthermore, the posterior draws of the parameters for

the SoC and PLR models are obtained from their normal-inverted Wishart distributions by setting

the vector of estimated hyperparameters to its posterior mode value. In contrast to the DSGE

models, these two BVAR models are re-estimated for each vintage with 100,000 posterior draws. The

density forecasts are based on the full vintage dataset; see the Online Appendix, Section B. Since

the posterior draws are independent, all draws are used when estimating the predictive likelihood.

The SV model is estimated through a Gibbs algorithm, extended with a Metropolis-Hastings step.

For this model, we have used 10,000 burn-in draws for the posterior sampler and 50,000 remaining

draws, where every 10th draw is used for the forecasting exercise and the model is re-estimated for

each real-time vintage.

II. Point Forecasts

The point forecast, given by the mean of the predictive density, is estimated by averaging the

point forecast conditional on the parameters over the posterior draws; see, for example, McAdam

and Warne (2019, Section 5.2) and Appendix B and Appendix C of this Online Appendix. The

recursively estimated paths are displayed in so-called spaghetti plots in Figure I.1 for the DSGE and
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BVAR models, with the real GDP growth forecasts in Panel A (top) and the inflation forecasts in

Panel B (bottom). The actual values are plotted with solid black lines, while the dashed lines are

the recursive posterior estimates of the population mean of the two variables for the DSGE models.

For the BVAR models, where some variables appear in levels rather than in first differences, the

dashed lines instead trace out the vintage sample mean values of real GDP growth and inflation

since 1995Q1.

Turning first to the real GDP growth forecasts in Panel A, the BVAR model forecasts tend to be

lower than those obtained from the DSGE models. This is not only true in the aftermath of the

Great Recession, but also prior to this episode. The mean forecast errors for the whole sample are

shown in Table I.3 and this visual observation is indeed confirmed as the mean errors concern the

difference between the actual value and the point forecast. The smallest mean errors are generated

by the BVAR model with the PLR, while those of the BVAR with the SoC prior are roughly 0.05–

0.15 percentage points larger in absolute terms and those of the SV model even larger. Since the

mean errors are all negative it follows that all six models over-predict real GDP growth on average

with overall larger errors in absolute terms for the DSGE models than for the BVAR models.13

Concerning the inflation point forecasts in Panel B of Figure I.1, the SW and SWU model forecast

paths are, as pointed out by McAdam and Warne (2019), quite similar up to 2014, with a strong

tendency for mean reversion over the forecast horizon. However, from around 2016 the SWU paths

still follow the same pattern, while those of the SW model tend to be flatter and even downward

sloping. The point forecasts of the SWFF model are quite different with v-shaped paths with a

strong tendency to drift down from one vintage to the next. Turning to the BVAR models, the

forecasts paths are flatter and more varied than those of the DSGE models. From the mean errors

in Table I.3, it can be seen that the DSGE models tend to under-predict inflation for the shorter

horizons and, in the cases of the SW and SWU models, over-predict inflation in the medium and

long term. As can also be inferred from the spaghetti-plots for the SWFF model, it under-predicts

inflation, albeit with a slightly decreasing error as the forecast horizon grows. By contrast, the mean

errors of the BVAR models are all smaller in absolute terms than those for the DSGE models and

suggest that the models weakly under-predict inflation. Recalling that both real GDP growth and

inflation are measured in quarterly terms such that their values are comparable in terms of scale, the

evidence in Table I.3 suggests that the six models tend to forecast inflation better than real GDP

growth in terms of point forecasts.

13 See McAdam and Warne (2019) for discussions on the finding that the DSGE models’ point forecast paths of real
GDP growth tend to jump up somewhat after the Great Recession, while the path of posterior population mean
estimates is downward-sloping.
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Section H: Impact of the Initial Weights on the Combination Method Results

Changing the initialization from equal weights to some other weighting scheme is straightforward

when applying the ALS, the SOP as well as the BMA and the DMA combination methods. For

the DP, however, the weight initialization depends on the parameters of the underlying process, ξt,

as well as on the information available through the model predictive likelihood values. The default

parameterization of ξt favors the propagation of equal weights through the initialization of ξT−1 and

the innovation ηt.

The predictive likelihood values of the models are initially set to a constant, such as unity or 1/M ,

for the time periods t = T, . . . , T + h+ l− 1 due to the information lag, l, and the forecast horizon,

h, delaying when actual realizations of the model predictive likelihoods can be observed. When the

number of particles is large enough, this initialization means that the model weights estimator

1

N

N∑
n=1

w
(n)
i,t+h|t

(
ρ
)
W

(n)
t ≈ 1

M
, t = T, . . . , T + h+ l − 1.

One way to influence the weights during this initialization phase is to feed the bootstrap particle

filter with alternative predictive likelihood values. For instance, the case when the SWFF model

should be given zero initial weight while the other five models each have the weight 1/5 can, partially,

be implemented by setting the predictive likelihood values of the models equal to these weights during

the first h+ l periods. The reason why this only partially changes the weights to the desired values is

related to the initialization of ξT−1 and to the assumption about ηt. Since both vectors are assumed

to be standard normal, it follows that for large N , the sample average of wi,T−1 = 1/6 (M = 6) and

similarly for the candidate model weights w̃i,t at the beginning of the forecasting step in the Bayesian

bootstrap filter. The expected value of the incremental weights in period T , ω̃T , is therefore given

by the weighted average of the predictive likelihood values (1/6).

During the updating step, the particles are given a candidate re-weighting scheme, W̃ (n)
T , based

on the old particle weights (unity) and the incremental weights. This candidate scheme will not

favor equal weights since the predictive likelihood value of those particles based on a low weight on

the SWFF model will achieve a larger predictive likelihood than average. For the selection step,

two possibilities exist, but with similar outcomes. If the effective sample size remains above the

selected threshold size, δ∗N , the re-weighted candidate scheme of particle weights will be applied

to the candidate model weights when estimating the model weights that are used to compute the

predictive likelihood for the nowcast and the h-quarter-ahead forecasts. The corresponding model

weights will have values less than 1/6 for the SWFF model but greater than zero since the candidate

model weights have mean 1/6. The other models obtain approximately equal values somewhat larger

than 1/6. On the other hand, if the effective sample size is below the threshold size, resampling

occurs based on the swarm of candidate model and particle weights where model weights for particles

with larger particle weights have a greater chance of survival, i.e., those with a low weight on the

SWFF model. Again, the result is that average model weight has a value less than 1/6 for the

SWFF model but greater than zero, while the average model weights on the other five models are

approximately equal and somewhat larger than 1/6.
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The inherent equal-weights force of ξt through its initialization and ηt can be guided towards other

steady-state weights by tuning its distribution. One option is to change the mean of the normal

distribution from zero to, say, −1.96 for the models where we wish to consider an initial weight

close to zero. Since the purpose is to aim at a particular vector of near fixed weights during the

first h + l time periods of the forecast sample, the mean of the normal distribution need only be

swapped during this period. Thereafter, the zero mean value is applied again, bearing in mind that

the ηt random draws again push the dynamic pool weights towards equal weights. In this section,

we consider the case when the mean of ξT−1 and ηt are equal to −1.96 for the SWFF model and

zero for the other models. This not only ensures that the weight on the SWFF model is relatively

close to 0 while the other weights are close to 1/5 up to time period T + h+ l− 1, but it also allows

the ξi,t process for the SWFF model to recover thereafter, provided that its predictive likelihood

values give sufficient support for the model. Furthermore, by limiting the number of periods for the

change of ηt to the initial h+ l periods of the forecast sample, it follows that this also applies when

iterating the ξt process forward when computing the h-step-ahead weight.14

The full sample log predictive scores for the alternative initialization scheme with “zero weight”

on the SWFF model and equal weights on the other models are shown in Table I.6 for the joint

real GDP growth and inflation case.15 The fixed weights cases in the table are denoted FW since

this covers both the EW combination and the combination with zero weight on the SWFF model.

It is striking that the log scores of all combination methods are positively affected by having a

zero initial weight on the SWFF model, with the exception of the SOP forecasts at some horizons

(h = 4, 5, 7); it should be kept in mind that by construction the selection of weights for the SOP

does not depend on lagged weights. The fixed weight combination scheme obtains the highest log

score for all horizons when the SWFF model is excluded, except when h = 5, and the improvements

are particularly notable for the shorter horizons. Although the DP also records substantial gains,

they are not sufficiently large for it to hold on to the first rank.

The posterior model weights for the joint real GDP growth and inflation density forecasts using

the DP and the SWFF zero initialization are displayed in Figure I.26. The grey lines in the panels

are the posterior weights based on the equal weights initialization; see also Figure 6 of our article.

The SWFF zero initialization method we have proposed for the DP indeed approximately provides

the intended properties, i.e., close to zero weights during the first h+ l periods of the forecast sample

and a chance to recover thereafter. In general, the weights on the SWFF model gradually become

larger over the sample, especially for the longer term forecasts. The weights on the other models shift

proportionally relative to the equal weights initialization to offset the lower weight on the SWFF

model, and with the shift becoming smaller as the weight on the SWFF model depends less on the

selected initialization method.

14 This implementation is equivalent to introducing a time-varying drift-term into the equation for ξi,t, when i is the
SWFF model, and having a zero mean for the distributions of ξT−1 and ηt.
15 The results for the marginal cases for real GDP growth and inflation are provided in Tables I.7-I.8. Recursive
estimates of the changes to the log predictive scores for selected horizons are shown in Figures I.24-I.25.
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Section I: Tables and Figures
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Table I.1: Observables used in the DSGE and BVAR models.

Observed Variables

Variable Symbol DSGEs: SW SWU SWFF SoC & PLR SV

real GDP (log) y 100 × Δyt
√ √ √

100 × yt 100 × Δyt

real private consumption (log) c 100 × Δct
√ √ √

100 × ct 100 × Δct

real total investment (log) i 100 × Δit
√ √ √

100 × it 100 × Δit

real wages (log) w 100 × Δwt
√ √ √

100 × wt 100 × Δwt

total employment (log) e 100 × Δet
√ √ √

100 × et 100 × Δet

GDP deflator inflation (log, quarterly) π 100 × πt
√ √ √

100 × πt 100 × πt

short-term nominal interest rate (%) r rt
√ √ √

rt rt

unemployment rate (%) u 100 × ut
√

100 × ut 100 × ut

spread (%) s st
√

st st
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Table I.2: The ragged edge of the euro area RTD: Vintages with missing data for
the variables.

Date y c i π e w r u

Backcast 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– – –

2001Q2 2001Q2 2001Q2 2003Q3 2017Q3 2017Q7

2002Q1 2002Q1 2002Q1

2003Q3 2003Q3

2004Q3 2004Q3 2004Q3

2006Q1 2006Q1 2006Q1

2006Q3 2006Q3 2006Q3

2014Q3– 2014Q3– 2014Q3–

2015Q4 2015Q4 2015Q4

2016Q2 2016Q2 2016Q2

2018Q1 2018Q1

2019Q1 2019Q1 2019Q1 2019Q1

Total 3 of 76 15 of 76 15 of 76 22 of 76 68 of 76 69 of 76 0 of 76 0 of 76

Nowcast 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– – 2005Q1

2019Q4 2019Q4 2019Q4 2019Q4 2019Q4 2019Q4 2005Q3–

2005Q4

2006Q3

2008Q1

Total 76 of 76 76 of 76 76 of 76 76 of 76 76 of 76 76 of 76 0 of 76 5 of 76
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Table I.3: Mean errors based on the predictive mean as the point forecast for the
sample 2001Q1–2019Q4.

Real GDP growth Inflation

DSGE BVAR DSGE BVAR

h SW SWFF SWU SoC PLR SV SW SWFF SWU SoC PLR SV

−1 0.045 −0.337 −0.218 −0.243 −0.139 −0.159 0.133 0.237 0.087 0.104 0.071 0.420

0 −0.160 −0.372 −0.250 −0.110 −0.057 −0.158 0.076 0.256 0.019 0.055 0.024 0.046

1 −0.333 −0.580 −0.357 −0.148 −0.074 −0.228 0.042 0.320 −0.028 0.064 0.024 0.046

2 −0.375 −0.638 −0.388 −0.168 −0.071 −0.247 0.006 0.336 −0.072 0.069 0.024 0.046

3 −0.378 −0.646 −0.380 −0.186 −0.068 −0.250 −0.028 0.329 −0.112 0.076 0.027 0.046

4 −0.356 −0.628 −0.346 −0.190 −0.060 −0.241 −0.067 0.304 −0.153 0.074 0.024 0.040

5 −0.337 −0.612 −0.311 −0.199 −0.061 −0.239 −0.099 0.278 −0.187 0.073 0.024 0.036

6 −0.316 −0.595 −0.276 −0.206 −0.064 −0.239 −0.124 0.252 −0.214 0.073 0.026 0.035

7 −0.295 −0.577 −0.241 −0.209 −0.065 −0.238 −0.151 0.223 −0.240 0.070 0.024 0.030

8 −0.272 −0.555 −0.206 −0.206 −0.062 −0.233 −0.175 0.197 −0.260 0.068 0.026 0.028
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Table I.6: Log predictive scores of joint real GDP growth and GDP deflator infla-
tion for nowcasts and one-to eight-quarter-ahead forecasts of six com-
bination methods based on different initializations over the vintages
2001Q1–2019Q4.

h Initial weights FW SOP DP BMA DMA ALS

0 SWFF zero −24.14 −31.56 −25.48 −36.80 −29.18 −28.18

Equal −29.88 −31.82 −27.11 −37.18 −30.13 −28.44

1 SWFF zero −39.27 −50.66 −39.46 −58.10 −47.91 −43.97

Equal −47.12 −51.06 −41.97 −58.64 −48.93 −44.38

2 SWFF zero −48.47 −68.87 −49.06 −72.49 −57.03 −53.78

Equal −56.16 −69.33 −51.70 −73.10 −58.22 −54.24

3 SWFF zero −54.35 −73.72 −55.25 −77.18 −63.44 −59.34

Equal −61.36 −74.26 −57.79 −77.85 −64.63 −59.86

4 SWFF zero −56.87 −70.68 −57.12 −78.47 −65.71 −60.91

Equal −63.22 −69.14 −59.54 −79.17 −66.54 −61.51

5 SWFF zero −59.60 −71.43 −59.60 −81.34 −66.59 −63.54

Equal −65.33 −70.44 −61.86 −82.07 −67.34 −64.16

6 SWFF zero −62.06 −71.22 −61.88 −79.73 −67.01 −65.52

Equal −67.14 −72.85 −63.80 −80.47 −68.20 −66.15

7 SWFF zero −63.83 −72.92 −63.21 −79.79 −66.80 −66.87

Equal −68.12 −70.90 −64.95 −80.54 −67.93 −67.53

8 SWFF zero −65.46 −69.97 −64.39 −78.23 −65.88 −67.87

Equal −69.17 −72.02 −65.78 −78.87 −66.57 −68.57

Notes: The initial weight scheme denoted “SWFF zero” has equal weights 1/5 on the SW, SWU, BVAR
SoC, BVAR PLR and BVAR SV models and weight 0 on the SWFF model, except for the dynamic pool,
where the initialization scheme is random but where the weights approximate such fixed weights on average.
The initial weight scheme “Equal” gives weight 1/6 to each model during the initialization sample. For the
fixed weight (FW) combination method the weights are constant at the “initial weights”.
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Table I.7: Log predictive scores of real GDP growth for nowcasts and one-to eight-
quarter-ahead forecasts of six combination methods based on different
initializations over the vintages 2001Q1–2019Q4.

h Initial weights FW SOP DP BMA DMA ALS

0 SWFF zero −42.48 −41.92 −41.64 −39.50 −43.19 −44.52

Equal −45.29 −41.98 −42.57 −39.74 −43.75 −44.58

1 SWFF zero −55.03 −64.43 −54.51 −68.05 −63.72 −58.38

Equal −58.98 −64.62 −56.12 −68.45 −64.68 −58.57

2 SWFF zero −57.91 −73.38 −57.61 −80.38 −68.66 −61.59

Equal −61.96 −72.98 −59.37 −80.86 −70.71 −61.85

3 SWFF zero −59.24 −75.54 −59.35 −79.16 −69.40 −62.75

Equal −63.17 −75.24 −61.10 −79.71 −71.12 −63.08

4 SWFF zero −58.55 −73.08 −58.49 −75.39 −66.61 −61.35

Equal −62.38 −72.57 −60.28 −75.96 −68.30 −61.78

5 SWFF zero −57.81 −73.18 −57.95 −71.96 −63.54 −60.62

Equal −61.50 −72.20 −59.71 −72.56 −65.26 −61.06

6 SWFF zero −57.58 −70.87 −57.93 −68.62 −61.65 −60.26

Equal −61.07 −69.81 −59.60 −69.26 −63.14 −60.74

7 SWFF zero −56.93 −73.58 −57.44 −64.59 −59.33 −59.60

Equal −60.32 −74.12 −59.01 −65.21 −60.86 −60.12

8 SWFF zero −55.70 −71.50 −56.24 −63.38 −57.66 −58.28

Equal −59.01 −70.93 −57.88 −63.99 −59.86 −58.85

Notes: See Table I.6 for details.

– 42 –



Table I.8: Log predictive scores of GDP deflator inflation for nowcasts and one-
to eight-quarter-ahead forecasts of six combination methods based on
different initializations over the vintages 2001Q1–2019Q4.

h Initial weights FW SOP DP BMA DMA ALS

0 SWFF zero 17.92 20.95 18.19 20.06 19.88 15.52

Equal 14.05 20.78 16.62 19.71 19.61 15.35

1 SWFF zero 14.68 16.68 14.36 16.17 16.14 11.62

Equal 9.87 16.46 12.45 15.80 15.85 11.40

2 SWFF zero 8.31 10.48 7.74 8.96 10.14 5.36

Equal 4.00 10.29 6.24 8.59 9.76 5.17

3 SWFF zero 3.78 5.29 2.48 3.33 4.66 1.20

Equal 0.16 5.08 1.42 2.96 3.25 1.00

4 SWFF zero 0.72 0.10 −0.73 0.58 1.97 −1.49

Equal −2.21 −0.12 −1.45 0.20 0.34 −1.72

5 SWFF zero −2.34 −0.37 −3.68 −1.00 −0.86 −4.08

Equal −4.64 −0.61 −3.99 −1.37 −2.24 −4.31

6 SWFF zero −4.73 0.20 −5.99 −0.57 −1.92 −5.97

Equal −6.42 0.01 −5.88 −0.87 −3.94 −6.16

7 SWFF zero −7.14 −0.29 −8.00 −0.71 −2.83 −7.56

Equal −7.99 −0.48 −7.51 −1.02 −4.93 −7.74

8 SWFF zero −9.75 −1.39 −10.15 −2.07 −4.53 −9.51

Equal −10.01 −1.56 −9.44 −2.24 −5.71 −9.67

Notes: See Table I.6 for details.
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Table I.9: PIT tests for the marginal nowcasts and one-step-ahead density fore-
casts of real GDP growth and GDP deflator inflation over the vintages
2001Q1–2019Q4.

Real GDP growth Inflation

(p, q) h Model AG p-value AG p-value

(2, 2) 0 SW 19.22 0.00 6.37 0.17

SWFF 46.87 0.00 143.70 0.00

SWU 32.37 0.00 3.30 0.51

SoC 69.88 0.00 3.83 0.43

PLR 74.03 0.00 3.04 0.55

SV 48.50 0.00 6.07 0.19

1 SW 31.45 0.00 8.41 0.08

SWFF 91.67 0.00 214.29 0.00

SWU 36.49 0.00 7.29 0.12

SoC 21.23 0.00 4.24 0.37

PLR 17.50 0.00 5.41 0.25

SV 64.56 0.00 7.90 0.10

(4, 2) 0 SW 27.44 0.00 7.98 0.24

SWFF 69.88 0.00 223.23 0.00

SWU 52.56 0.00 4.42 0.62

SoC 132.96 0.00 3.92 0.69

PLR 144.41 0.00 3.33 0.77

SV 90.43 0.00 6.09 0.41

1 SW 46.07 0.00 8.30 0.22

SWFF 144.41 0.00 353.53 0.00

SWU 55.64 0.00 8.02 0.24

SoC 36.04 0.00 4.24 0.64

PLR 32.29 0.00 6.50 0.37

SV 114.91 0.00 8.38 0.21

Notes: The Amisano-Geweke PIT tests are described in the Online Appendix of Amisano and Geweke
(2017); see also Appendix D above.
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Figure I.1: Recursive point backcasts, nowcasts and forecasts of real GDP growth
and GDP deflator inflation using the RTD vintages 2001Q1–2019Q4.
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Notes: The actual values are plotted as solid black lines. Recursively estimated posterior mean values of mean
real GDP growth and mean inflation are plotted as dashed lines using the DSGE models. By contrast, the dashed
lines are vintage sample mean values since 1995Q1 of real GDP growth and inflation for the BVAR plots.
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Figure I.2: Recursive posterior mode estimates of the hyperparameters of the
BVAR models for 2001Q1–2014Q4.
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Figure I.3: Histograms of the estimated πT+h+1|T values for the marginal real GDP
growth density forecasts at the nowcast (h = 0) and one-quarter-ahead
(h = 1) horizons for 2001Q1–2019Q4.

A. Nowcasts

SW model SWFF model SWU model

BVAR SoC BVAR PLR BVAR SV

111

111

0.50.50.5

0.50.50.5

0.40.40.4

0.40.40.4

0.30.30.3

0.30.30.3

0.20.20.2

0.20.20.2

0.10.10.1

0.10.10.1

0
0

0
0

0
0

0
0

0
0

0
0
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Notes: The horizontal axis shows the 10 bins while the vertical axis shows the occurence frequency for the
estimated π’s. If these variables are uniformly distributed for a model, then the occurence in large samples is
0.10 for all bins.
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Figure I.4: Histograms of the estimated πT+h+1|T values for the marginal GDP
deflator inflation density forecasts at the nowcast (h = 0) and one-
quarter-ahead (h = 1) horizons for 2001Q1–2019Q4.
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Figure I.5: Percentile values of the Amisano-Giacomini weighted likelihood ratio
tests for the equality of the average log predictive scores of ten BVAR
and DSGE model pairs for the sample 2001Q1–2019Q4.
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Notes: The test statistics have been computed with equal weights and using the Bartlett kernel for the HAC
estimator (Newey and West, 1987). Following Amisano and Giacomini (2007) we use a short truncation lag, but
rather than using their selection of zero lags we use one lag. The percentile value of the test statistic is taken
from a standard normal distribution, where large percentile values favor the first model of the test and small
percentile values the second model.
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Figure I.6: Percentile values of the Amisano-Giacomini weighted likelihood ratio
tests for the equality of the average log predictive scores of the dynamic
prediction pool versus nine alternative forecast schemes for the sample
2001Q1–2019Q4.
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Notes: The density forecast combination methods are given by dynamic prediction pool (DP), equal weights
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Figure I.7: Recursive estimates of the average log predictive scores of the marginal
density forecasts of real GDP growth and GDP deflator inflation and
in deviation from the recursive estimates of the average log scores from
the dynamic prediction pool covering the vintages 2001Q1–2019Q4.
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Figure I.8: Posterior estimates of the model weights for ALS of the joint density
forecasts of real GDP growth and GDP deflator inflation covering the
vintages 2001Q1–2019Q4.
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Figure I.9: Posterior estimates of the model weights for ALS of the marginal density
forecasts of real GDP growth covering the vintages 2001Q1–2019Q4.
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Figure I.10: Posterior estimates of the model weights for ALS of the marginal den-
sity forecasts of GDP deflator inflation covering the vintages 2001Q1–
2019Q4.
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Figure I.11: Posterior estimates of the model weights for BMA of the joint density
forecasts of real GDP growth and GDP deflator inflation covering the
vintages 2001Q1–2019Q4.
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Figure I.12: Posterior estimates of the model weights for BMA of the marginal
density forecasts of real GDP growth covering the vintages 2001Q1–
2019Q4.
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Figure I.13: Posterior estimates of the model weights for BMA of the marginal den-
sity forecasts of GDP deflator inflation covering the vintages 2001Q1–
2019Q4.
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Figure I.14: Posterior estimates of the model weights for DMA of the joint density
forecasts of real GDP growth and GDP deflator inflation covering the
vintages 2001Q1–2019Q4.
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Figure I.15: Posterior estimates of the model weights for DMA of the marginal
density forecasts of real GDP growth covering the vintages 2001Q1–
2019Q4.
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Figure I.16: Posterior estimates of the model weights for DMA of the marginal den-
sity forecasts of GDP deflator inflation covering the vintages 2001Q1–
2019Q4.
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Figure I.17: Posterior estimates of the model weights for the DP of the joint density
forecasts of real GDP growth and GDP deflator inflation covering the
vintages 2001Q1–2019Q4.
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Figure I.18: Posterior estimates of the model weights for the DP of the marginal
density forecasts of real GDP growth covering the vintages 2001Q1–
2019Q4.
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Figure I.19: Posterior estimates of the model weights for the DP of the mar-
ginal density forecasts of GDP deflator inflation covering the vintages
2001Q1–2019Q4.
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Figure I.20: Posterior estimates of the model weights for the SOP of the joint den-
sity forecasts of real GDP growth and GDP deflator inflation covering
the vintages 2001Q1–2019Q4.
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Figure I.21: Posterior estimates of the model weights for the SOP of the marginal
density forecasts of real GDP growth covering the vintages 2001Q1–
2019Q4.
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Figure I.22: Posterior estimates of the model weights for the SOP of the mar-
ginal density forecasts of GDP deflator inflation covering the vintages
2001Q1–2019Q4.
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Figure I.23: Recursive estimates of the differences of log predictive scores of mar-
ginal real GDP growth and GDP deflator inflation density forecasts
with information lag 1 and 4 covering the vintages 2001Q1–2019Q4.

A. Real GDP Growth
nowcast one-quarter-ahead two-quarter-ahead

four-quarter-ahead eight-quarter-ahead

20002000

200020002000

20052005

200520052005

20102010

201020102010

20152015

201520152015

20202020

202020202020

10

5

44

44

22

22

00

00

0

-2-2

-2-2

-4-4

-4-4

SOP
DP
BMA
DMA
ALS

B. GDP Deflator Inflation
nowcast one-quarter-ahead two-quarter-ahead

four-quarter-ahead eight-quarter-ahead

20002000

200020002000

20052005

200520052005

20102010

201020102010

20152015

201520152015

20202020

202020202020

11

111

00

000

-1-1

-1-1-1

SOP
DP
BMA
DMA
ALS

– 67 –



Figure I.24: Recursive estimates of the differences of log predictive scores of joint
real GDP growth and GDP deflator inflation density forecasts with the
SWFF zero initialization and the equal weights initialization covering
the vintages 2001Q1–2019Q4.
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Figure I.25: Recursive estimates of the differences of log predictive scores of mar-
ginal real GDP growth and GDP deflator inflation density forecasts
with the SWFF zero initialization and the equal weights initialization
covering the vintages 2001Q1–2019Q4.
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Figure I.26: Posterior estimates of the model weights for the dynamic prediction
pool of joint real GDP growth and GDP deflator inflation based on the
SWFF zero initialization and covering the vintages 2001Q1–2019Q4.
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Figure I.27: Posterior predictive densities of real GDP growth in 2007Q2–2009Q1
from the SW, SWFF and SWU models based on the real-time database
vintage from 2007Q1 along with the normal approximation using the
posterior predictive mean and variance, the posterior mean and the
actual value.
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Figure I.27: Posterior predictive densities of real GDP growth in 2007Q2–2009Q1
from the SW, SWFF and SWU models based on the real-time database
vintage from 2007Q1 along with the normal approximation using the
posterior predictive mean and variance, the posterior mean and the
actual value (Continued).
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Figure I.28: Recursive estimates of the average log predictive scores of the joint
density forecasts of real GDP growth and GDP deflator inflation for
the vintages 2001Q1–2019Q4 and using the first release data for the
actual values.
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Figure I.29: Recursive estimates of the average log predictive scores of the joint
density forecasts of real GDP growth and GDP deflator inflation for
the vintages 2001Q1–2019Q4 and using the second quarter release data
for the actual values.
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Figure I.30: Recursive estimates of the average log predictive scores of the joint
density forecasts of real GDP growth and GDP deflator inflation for
the vintages 2001Q1–2019Q4 and using the third quarter release data
for the actual values.
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Figure I.31: Recursive estimates of the average log predictive scores of the joint
density forecasts of real GDP growth and GDP deflator inflation for
the vintages 2001Q1–2019Q4 and using the annual revision data for
the actual values.
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